【題目】湖州某企業(yè)新增了一個(gè)化工項(xiàng)目,為了節(jié)約資源,保護(hù)環(huán)境,該企業(yè)決定購買A、B兩種型號(hào)的污水處理設(shè)備共10臺(tái),具體情況如下表:

A

B

價(jià)格(萬元/臺(tái))

15

12

月污水處理能力(噸/月)

250

200

經(jīng)預(yù)算,企業(yè)最多支出136萬元購買設(shè)備,且要求月處理污水能力不低于2150噸.

(1)該企業(yè)有哪幾種購買方案?

(2)哪種方案更省錢?并說明理由.

【答案】(1)有3種購買方案:第一種是購買3臺(tái)A型污水處理設(shè)備,7臺(tái)B型污水處理設(shè)備;第二種是購買4臺(tái)A型污水處理設(shè)備,6臺(tái)B型污水處理設(shè)備;第三種是購買5臺(tái)A型污水處理設(shè)備,5臺(tái)B型污水處理設(shè)備;(2)購買3臺(tái)A型污水處理設(shè)備,7臺(tái)B型污水處理設(shè)備更省錢.

【解析】

(1)設(shè)購買A型號(hào)的污水處理設(shè)備x臺(tái),則購買B型號(hào)的污水處理設(shè)備(10-x)臺(tái),根據(jù)購買資金不超過136萬元及月處理污水能力不低于2150噸,即可得出關(guān)于x的一元一次不等式組,解之即可得出x的取值范圍,再由x為整數(shù)即可得出各購買方案;

(2)根據(jù)總價(jià)=單價(jià)×數(shù)量,分別求出3種購買方案所需總費(fèi)用,比較后即可得出結(jié)論.

(1)設(shè)購買型號(hào)的污水處理設(shè)備臺(tái),則購買型號(hào)的污水處理設(shè)備臺(tái),

根據(jù)題意得:

解得:

是整數(shù)

,

當(dāng)時(shí),

當(dāng)時(shí),;

當(dāng)時(shí),

答:有3種購買方案:第一種是購買3臺(tái)A型污水處理設(shè)備,7臺(tái)B型污水處理設(shè)備;第二種是購買4臺(tái)A型污水處理設(shè)備,6臺(tái)B型污水處理設(shè)備;第三種是購買5臺(tái)A型污水處理設(shè)備,5臺(tái)B型污水處理設(shè)備.

(2)當(dāng)時(shí),購買資金為15×3+12×7=129(萬元),

當(dāng)時(shí),購買資金為15×4+12×6=132(萬元),

當(dāng)時(shí),購買資金為15×5+12×5=135(萬元).

135>132>129,

∴為了節(jié)約資金,應(yīng)購污水處理設(shè)備A型號(hào)3臺(tái),B型號(hào)7臺(tái).

答:購買3臺(tái)A型污水處理設(shè)備,7臺(tái)B型污水處理設(shè)備更省錢

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明購買了一部新手機(jī),到某通訊公司咨詢移動(dòng)電話資費(fèi)情況,準(zhǔn)備辦理入網(wǎng)手續(xù),該通訊公司工作人員向他介紹兩種不同的資費(fèi)方案:

方案代號(hào)

月租費(fèi)(元)

免費(fèi)時(shí)間(分)

超過免費(fèi)時(shí)間的通話費(fèi)(元/分)

10

0

0.20

30

80

0.15


(1)分別寫出方案一、二中,月話費(fèi)(月租費(fèi)與通話費(fèi)的總和)y(單位:元)與通話時(shí)間x(單位:分)的函數(shù)關(guān)系式;
(2)畫出(1)中兩個(gè)函數(shù)的圖象;
(3)若小明月通話時(shí)間為200分鐘左右,他應(yīng)該選擇哪種資費(fèi)方案最省錢.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,四根長(zhǎng)度一定的木條,其中AB=6cm,CD=15cm,將這四根木條用小釘絞合在一起,構(gòu)成一個(gè)四邊形ABCD(在A、B、C、D四點(diǎn)處是可以活動(dòng)的).現(xiàn)固定AB邊不動(dòng),轉(zhuǎn)動(dòng)這個(gè)四邊形,使它的形狀改變,在轉(zhuǎn)動(dòng)的過程中有以下兩個(gè)特殊位置.

位置一:當(dāng)點(diǎn)DBA的延長(zhǎng)線上時(shí),點(diǎn)C在線段AD上(如圖2);

位置二:當(dāng)點(diǎn)CAB的延長(zhǎng)線上時(shí),∠C=90°.

(1)在圖2中,若設(shè)BC的長(zhǎng)為,請(qǐng)用含的代數(shù)式表示AD的長(zhǎng);

(2)在圖3中畫出位置二的示意圖

(3)利用圖2、圖3求圖1的四邊形ABCDBC、AD邊的長(zhǎng)度

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,PD⊥OA于點(diǎn)D,PE⊥OB于點(diǎn)E.如果點(diǎn)M是OP的中點(diǎn),則DM的長(zhǎng)是( 。

A. 2 B. C. D. 2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠C=90°,ABC=45°,DBC邊上的一點(diǎn),BD=2,將△ACD沿直線AD翻折,點(diǎn)C剛好落在AB邊上的點(diǎn)E.P是直線AD上的動(dòng)點(diǎn),則△PEB的周長(zhǎng)的最小值是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在直線L上依次擺放著七個(gè)正方形,已知斜放置的三個(gè)正方形的面積分別為1、2、3,正放置的四個(gè)正方形的面積依次是S1、S2、S3、S4 , S1+2S2+2S3+S4=(

A. 5 B. 4 C. 6 D. 10

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+bx﹣3a(a≠0)與x軸交于點(diǎn)A(﹣1,0)和點(diǎn)B,與y軸交于點(diǎn)C(0,2),連接BC.

(1)求該拋物線的解析式和對(duì)稱軸,并寫出線段BC的中點(diǎn)坐標(biāo);
(2)將線段BC先向左平移2個(gè)單位長(zhǎng)度,再向下平移m個(gè)單位長(zhǎng)度,使點(diǎn)C的對(duì)應(yīng)點(diǎn)C1恰好落在該拋物線上,求此時(shí)點(diǎn)C1的坐標(biāo)和m的值;
(3)若點(diǎn)P是該拋物線上的動(dòng)點(diǎn),點(diǎn)Q是該拋物線對(duì)稱軸上的動(dòng)點(diǎn),當(dāng)以P,Q,B,C四點(diǎn)為頂點(diǎn)的四邊形是平行四邊形時(shí),求此時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A,B在反比例函數(shù)y= (k>0)的圖象上,AC⊥x軸,BD⊥x軸,垂足C,D分別在x軸的正、負(fù)半軸上,CD=k,已知AB=2AC,E是AB的中點(diǎn),且△BCE的面積是△ADE的面積的2倍,則k的值是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知如圖,在平面直角坐標(biāo)系xOy中,點(diǎn)A、B、C分別為坐標(biāo)軸上上的三個(gè)點(diǎn),且OA=1,OB=3,OC=4,
(1)求經(jīng)過A、B、C三點(diǎn)的拋物線的解析式;
(2)在平面直角坐標(biāo)系xOy中是否存在一點(diǎn)P,使得以以點(diǎn)A、B、C、P為頂點(diǎn)的四邊形為菱形?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由;
(3)若點(diǎn)M為該拋物線上一動(dòng)點(diǎn),在(2)的條件下,請(qǐng)求出當(dāng)|PM﹣AM|的最大值時(shí)點(diǎn)M的坐標(biāo),并直接寫出|PM﹣AM|的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案