如圖,已知:在Rt△ABC中,∠ACB=90°,∠B=30°,CD⊥AB于D.
求證:AD=
14
AB.
分析:在直角三角形ABC中,由∠B=30°,利用30°所對的直角邊等于斜邊的一半,得到AC等于AB的一半,由CD垂直于AB,得到三角形ACD和三角形BCD都為直角三角形,由∠B為30°,求出∠ACD為30°,再利用30°所對的直角邊等于斜邊的一半得到AD為AC的一半,等量代換可得證.
解答:證明:在Rt△ABC中,∠ACB=90°,∠B=30°,
∴AC=
1
2
AB,
∵CD⊥AB,
∴∠CDB=90°,
在Rt△BCD中,∠B=30°,
∴∠DCB=60°,
∴∠ACD=∠ACB-∠DCB=90°-60°=30°,
在Rt△ACD中,AD=
1
2
AC,
則AD=
1
4
AB.
點(diǎn)評:此題考查了含30°直角三角形的性質(zhì),熟練掌握此性質(zhì)是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知,在Rt△ABC中,∠C=90°,沿過B點(diǎn)的一條直線BE折疊這個(gè)三角形,使C點(diǎn)與AB邊上的一點(diǎn)D重合.
(1)當(dāng)∠A滿足什么條件時(shí),點(diǎn)D恰為AB的中點(diǎn)寫出一個(gè)你認(rèn)為適當(dāng)?shù)臈l件,并利用此條件證明D為AB的中點(diǎn);
(2)在(1)的條件下,若DE=1,求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知,在Rt△ABC中,∠ACB=90°,∠BAC=30°,BC=6cm;D為AC上一點(diǎn)(不與A、C不精英家教網(wǎng)重合),過D作DQ⊥AC(DQ與AB在AC的同側(cè));點(diǎn)P從D點(diǎn)出發(fā),在射線DQ上運(yùn)動,連接PA、PC.
(1)當(dāng)PA=PC時(shí),求出AD的長;
(2)當(dāng)△PAC構(gòu)成等腰直角三角形時(shí),求出AD、DP的長;
(3)當(dāng)△PAC構(gòu)成等邊三角形時(shí),求出AD、DP的長;
(4)在運(yùn)動變化過程中,△CAP與△ABC能否相似?若△CAP與△ABC相似,求出此時(shí)AD與DP的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知:在Rt△ABC中,∠ACB=90°,sinB=
35
,D是BC上一點(diǎn),DE⊥AB,垂足為E,CD=DE,AC+CD=9.求BC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

21、如圖,已知:在Rt△ABC中,∠ACB=90°,AC=4,BC=3,AM=AC,BN=BC.
求:(1)AB的長;(2)MN的長.

查看答案和解析>>

同步練習(xí)冊答案