16、如圖,AD平分∠BAC,∠BAC+∠ACD=180°,E在AD上,BE的延長線交CD于F,連CE,且∠1=∠2,試說明AB=AC.
分析:由已知,∠BAC+∠ACD=180°,可證CD∥AB,得∠1=∠B,所以∠B=∠2,又AD平分∠BAC,得證△ABE≌△ACE,即得AB=AC.
解答:證明:∵∠BAC+∠ACD=180°,
∴AB∥CD,
∴∠1=∠B,∠B=∠2,
又∵AD平分∠BAC,
∴∠CAE=∠BAE,
∵AE=AE,
∴△ABE≌△ACE,
∴AB=AC.
點評:本題主要考查了平行線的性質定理以及對全等三角形的判定,做題時要結合圖形,在圖形上做題.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖,AB平分∠CAD,E為AB上一點,若AC=AD,則下列結論錯誤的是( �。�

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,AD為△ABC的角平分線,M為BC的中點,ME∥AD交BA的延長線于E,交AC于F.求證:BE=CF=
12
(AB+AC).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,AD是△ABC的角平分線,過點D作直線DF∥BA,交△ABC的外角平分線AF于點F,DF與AC交于點E.
求證:DE=EF.

查看答案和解析>>

科目:初中數(shù)學 來源:2012年人教版八年級上全等三角形2練習卷(解析版) 題型:選擇題

如圖,AB平分∠CAD,E為AB上一點,若AC=AD,則下列結論錯誤的是 (   )

A、BC=BD;          B、CE=DE;    C、BA平分∠CBD;   D、圖中有兩對全等三角形

 

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,AD為△ABC的角平分線,M為BC的中點,MEAD交BA的延長線于E,交AC于F.求證:BE=CF=
1
2
(AB+AC).
精英家教網(wǎng)

查看答案和解析>>

同步練習冊答案