【題目】某公司生產(chǎn)的某種產(chǎn)品每件成本為40元,經(jīng)市場(chǎng)調(diào)查整理出如下信息:

①該產(chǎn)品90天售量(n件)與時(shí)間(第x天)滿足一次函數(shù)關(guān)系,部分?jǐn)?shù)據(jù)如下表:

②該產(chǎn)品90天內(nèi)每天的銷售價(jià)格與時(shí)間(第x天)的關(guān)系如下表:

1)求出第10天日銷售量;

2)設(shè)銷售該產(chǎn)品每天利潤為y元,請(qǐng)寫出y關(guān)于x的函數(shù)表達(dá)式,并求出在90天內(nèi)該產(chǎn)品的銷售利潤最大?最大利潤是多少?(提示:每天銷售利潤=日銷售量×(每件銷售價(jià)格﹣每件成本))

3)在該產(chǎn)品銷售的過程中,共有多少天銷售利潤不低于5400元,請(qǐng)直接寫出結(jié)果.

【答案】1180;(2)當(dāng)x40時(shí),y的值最大,最大值是7200;(346天銷售利潤不低于5400元.

【解析】

1)根據(jù)待定系數(shù)法解出一次函數(shù)解析式即可,進(jìn)而得出第10天日銷售量;
2)當(dāng)1≤x50時(shí),y=-2x2+160x+4000;當(dāng)50≤x≤90時(shí),y=-120x+12000,分別求出各段上的最大值,比較即可得到結(jié)論;
3)根據(jù)1≤x5050≤x≤90時(shí),由y≥5400求得x的范圍,據(jù)此可得銷售利潤不低于5400元的天數(shù).

解:(1)∵nx成一次函數(shù),

∴設(shè)nkx+b,將x1,n198,x3n194代入,得:

解得:.

所以n關(guān)于x的一次函數(shù)表達(dá)式為n=﹣2x+200,

故第10天日銷售量:n=﹣20+200180(件);

2)設(shè)銷售該產(chǎn)品每天利潤為y元,y關(guān)于x的函數(shù)表達(dá)式為:

,

當(dāng)1≤x50時(shí),y=﹣2x2+160x+4000=﹣2x402+7200,

∵﹣20,

∴當(dāng)x40時(shí),y有最大值,最大值是7200;

當(dāng)50≤x≤90時(shí),y=﹣120x+12000,

∵﹣1200

yx增大而減小,即當(dāng)x50時(shí),y的值最大,最大值是6000;

綜上所述,當(dāng)x40時(shí),y的值最大,最大值是7200,即在90天內(nèi)該產(chǎn)品第40天的銷售利潤最大,最大利潤是7200元;

3)當(dāng)1≤x50時(shí),由y≥5400可得﹣2x2+160x+4000≥5400,

解得:10≤x≤70,

1≤x50,

10≤x50;

當(dāng)50≤x≤90時(shí),由y≥5400可得﹣120x+12000≥5400,

解得:x≤55,

50≤x≤90

50≤x≤55,

綜上所述,10≤x≤55,

故在該產(chǎn)品銷售的過程中,共有46天銷售利潤不低于5400元.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】觀察下面的點(diǎn)陣圖和相應(yīng)的等式,探究其中的規(guī)律:

(1)認(rèn)真觀察,并在④后面的橫線上寫出相應(yīng)的等式.

1=1 1+2==3 1+2+3==6    

(2)結(jié)合(1)觀察下列點(diǎn)陣圖,并在⑤后面的橫線上寫出相應(yīng)的等式.

1=121+3=223+6=326+10=42   

(3)通過猜想,寫出(2)中與第n個(gè)點(diǎn)陣相對(duì)應(yīng)的等式   

【答案】(1)10;(2)見解析;(3)

【解析】試題分析:(1)根據(jù)①②③觀察會(huì)發(fā)現(xiàn)第四個(gè)式子的等號(hào)的左邊是1+2+3+4,右邊分子上是(1+4)×4,從而得到規(guī)律;

(2)通過觀察發(fā)現(xiàn)左邊是10+15,右邊是255的平方;

(3)過對(duì)一些特殊式子進(jìn)行整理、變形、觀察、比較,歸納出一般規(guī)律.

試題解析:(1)根據(jù)題中所給出的規(guī)律可知:1+2+3+4==10;

(2)由圖示可知點(diǎn)的總數(shù)是5×5=25,所以10+15=52

(3)由(1)(2)可知

點(diǎn)睛:主要考查了學(xué)生通過特例分析從而歸納總結(jié)出一般結(jié)論的能力.對(duì)于找規(guī)律的題目首先應(yīng)找出哪些部分發(fā)生了變化,是按照什么規(guī)律變化的.通過分析找到各部分的變化規(guī)律后用一個(gè)統(tǒng)一的式子表示出變化規(guī)律是此類題目中的難點(diǎn).

型】解答
結(jié)束】
19

【題目】如圖,用細(xì)線懸掛一個(gè)小球,小球在豎直平面內(nèi)的A、C兩點(diǎn)間來回?cái)[動(dòng),A點(diǎn)與地面距離AN=14cm,小球在最低點(diǎn)B時(shí),與地面距離BM=5cm,AOB=66°,求細(xì)線OB的長度.(參考數(shù)據(jù):sin66°≈0.91,cos66°≈0.40,tan66°≈2.25)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】百日長跑為我校的傳統(tǒng)項(xiàng)目,為了解九年級(jí)學(xué)生的體能狀況,從我校九年級(jí)學(xué)生中隨機(jī)抽取部分學(xué)生進(jìn)行八百米跑體能測(cè)試,測(cè)試結(jié)果分為AB、C、D四個(gè)等級(jí),請(qǐng)根據(jù)兩幅統(tǒng)計(jì)圖中的信息回答下列問題:

求本次測(cè)試共調(diào)查了多少名學(xué)生?

求本次測(cè)試結(jié)果為B等級(jí)的學(xué)生數(shù),并補(bǔ)全條形統(tǒng)計(jì)圖;

我校九年級(jí)共有2100名學(xué)生,請(qǐng)你估計(jì)九年級(jí)學(xué)生中體能測(cè)試結(jié)果為D等級(jí)的學(xué)生有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知A(m2),B(2n)是一次函數(shù)y=﹣x+1的圖象與反比例函數(shù)y(k0)圖象的兩個(gè)交點(diǎn).

(1)求反比例函數(shù)的解析式;

(2)根據(jù)圖象,請(qǐng)直接寫出關(guān)于x的不等式﹣x+1的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,的頂點(diǎn)E,F分別在BC,CD邊上,高AG與正方形的邊長相等,求的度數(shù).

如圖,在中,,,點(diǎn)MNBD邊上的任意兩點(diǎn),且,將繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)位置,連接NH,試判斷MN,NDDH之間的數(shù)量關(guān)系,并說明理由.

在圖中,連接BD分別交AE,AF于點(diǎn)M,N,若,,,求AGMN的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=6cm,BC=12cm,∠B=90°.點(diǎn)P從點(diǎn)A開始沿AB邊向點(diǎn)B以1cm/s的速度移動(dòng),點(diǎn)Q從點(diǎn)B開始沿BC邊向點(diǎn)C以2cm/s的速度移動(dòng),如果P,Q分別從A,B同時(shí)出發(fā),設(shè)移動(dòng)時(shí)間為ts).

(1)當(dāng)時(shí),求△PBQ的面積;

(2)當(dāng)為多少時(shí),四邊形APQC的面積最小?最小面積是多少?

(3)當(dāng)為多少時(shí),△PQB與△ABC相似.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商家銷售一款商品,該商品的進(jìn)價(jià)為每件80元,現(xiàn)在的售價(jià)為每件145元,每天可銷售40商場(chǎng)規(guī)定每銷售一件需支付給商場(chǎng)管理費(fèi)5元,通過市場(chǎng)調(diào)查發(fā)現(xiàn),該商品單價(jià)每降1元,每天銷售量增加2若每件商品降價(jià)x元,每天的利潤為y元,請(qǐng)完成以下問題的解答.

用含x的式子表示:

每件商品的售價(jià)為______元;

每天的銷售量為______件;

求出yx之間的函數(shù)關(guān)系式,并求出售價(jià)為多少時(shí)利潤最大?最大利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,有3張背面相同的紙牌A,BC,其正面分別畫有三個(gè)不同的幾何圖形,

1)求摸出一張紙片是中心對(duì)稱圖形的概率;

2)將這3張紙牌背面朝上洗勻后摸出一張,放回洗勻后再摸出一張.求摸出兩張牌面圖形既是軸對(duì)稱圖形又是中心對(duì)稱圖形的紙牌的概率,(用樹狀圖或列表法求解,紙牌可用AB,C表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(2017四川省樂山市,第10題,3分)如圖,平面直角坐標(biāo)系xOy中,矩形OABC的邊OA、OC分別落在x、y軸上,點(diǎn)B坐標(biāo)為(64),反比例函數(shù)的圖象與AB邊交于點(diǎn)D,與BC邊交于點(diǎn)E,連結(jié)DE,將△BDE沿DE翻折至△B'DE處,點(diǎn)B'恰好落在正比例函數(shù)y=kx圖象上,則k的值是( 。

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案