(2012•朝陽區(qū)一模)根據(jù)對北京市相關的市場物價調(diào)研,預計進入夏季后的某一段時間,某批發(fā)市場內(nèi)的甲種蔬菜的銷售利潤y1(千元)與進貨量x(噸)之間的函數(shù)y1=kx的圖象如圖①所示,乙種蔬菜的銷售利潤y2(千元)與進貨量x(噸)之間的函數(shù)y2=ax2+bx的圖象如圖②所示.

(1)分別求出y1、y2與x之間的函數(shù)關系式;
(2)如果該市場準備進甲、乙兩種蔬菜共10噸,設乙種蔬菜的進貨量為t噸,寫出這兩種蔬菜所獲得的銷售利潤之和W(千元)與t(噸)之間的函數(shù)關系式,并求出這兩種蔬菜各進多少噸時獲得的銷售利潤之和最大,最大利潤是多少?
分析:(1)把(5,3)代入正比例函數(shù)即可求得k的值也就求得了y1的關系式;把原點及(1,2),(5,6)代入即可求得y2的關系式;
(2)銷售利潤之和W=甲種蔬菜的利潤+乙種蔬菜的利潤,利用配方法求得二次函數(shù)的最值即可.
解答:解:(1)由題意得:5k=3,
解得k=0.6,
∴y1=0.6x;
c=0
a+b+c=2
25a+5b+c=6

解得:
a=-0.2
b=2.2
c=0

∴y2=-0.2x2+2.2x;

(2)W=0.6(10-t)+(-0.2t2+2.2t)=-0.2t2+1.6t+6=-0.2(t-4)2+9.2.
所以甲種蔬菜進貨量為6噸,乙種蔬菜進貨量為4噸時,獲得的銷售利潤之和最大,最大利潤是9200元.
點評:考查二次函數(shù)的應用;得到甲乙兩種商品的利潤是解決本題的突破點;得到總利潤的關系式是解決本題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2012•朝陽區(qū)一模)在平面直角坐標系xOy中,拋物線y=ax2+bx+3經(jīng)過點N(2,-5),過點N作x軸的平行線交此拋物線左側于點M,MN=6.
(1)求此拋物線的解析式;
(2)點P(x,y)為此拋物線上一動點,連接MP交此拋物線的對稱軸于點D,當△DMN為直角三角形時,求點P的坐標;
(3)設此拋物線與y軸交于點C,在此拋物線上是否存在點Q,使∠QMN=∠CNM?若存在,求出點Q的坐標;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:閱讀理解

(2012•朝陽區(qū)一模)閱讀下面材料:
問題:如圖①,在△ABC中,D是BC邊上的一點,若∠BAD=∠C=2∠DAC=45°,DC=2.求BD的長.

小明同學的解題思路是:利用軸對稱,把△ADC進行翻折,再經(jīng)過推理、計算使問題得到解決.
(1)請你回答:圖中BD的長為
2
2
2
2
;
(2)參考小明的思路,探究并解答問題:如圖②,在△ABC中,D是BC邊上的一點,若∠BAD=∠C=2∠DAC=30°,DC=2,求BD和AB的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•朝陽區(qū)一模)如圖,P是反比例函數(shù)y=
k
x
(x>0)的圖象上的一點,PN垂直x軸于點N,PM垂直y軸于點M,矩形OMPN的面積為2,且ON=1,一次函數(shù)y=x+b的圖象經(jīng)過點P.
(1)求該反比例函數(shù)和一次函數(shù)的解析式;
(2)設直線y=x+b與x軸的交點為A,點Q在y軸上,當△QOA的面積等于矩形OMPN的面積的
1
4
時,直接寫出點Q的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•朝陽區(qū)一模)如圖,在?ABCD中,對角線AC、BD相交于點O,點E在BD的延長線上,且△EAC是等邊三角形,若AC=8,AB=5,求ED的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•朝陽區(qū)一模)列方程解應用題:
為提高運輸效率、保障高峰時段人們的順利出行,地鐵公司在保證安全運行的前提下,縮短了發(fā)車間隔,從而提高了運送乘客的數(shù)量.縮短發(fā)車間隔后比縮短發(fā)車間隔前平均每分鐘多運送乘客50人,使得縮短發(fā)車間隔后運送14400人的時間與縮短發(fā)車間隔前運送12800人的時間相同,那么縮短發(fā)車間隔前平均每分鐘運送乘客多少人?

查看答案和解析>>

同步練習冊答案