【題目】如圖,某地在山區(qū)修建高速公路時需挖通一條隧道,為估計這條隧道的長度需測出這座山A、B間的距離,結合所學知識或方法,設計測量方案你能給出什么好的方法嗎?

【答案】見解析

【解析】

選擇一合適的地點O,連接AO、BO,測出AOBO的長度,延長AO、BOA′、B′,使OA′=OA,OB′=OB,連接A′B′,則A′B′的長即是這座山A、B間的距離;可通過證AOB≌△A′OB′來驗證方案的合理性.

解:選擇一合適的地點O,連接AO、BO,測出AOBO的長度,延長AO、BOA′、B′,使OA′=OA,OB′=OB,連接A′B′,這樣就構成兩個三角形,

△AOB△A′OB′中,

,

∴△AOB≌△A′OB′(SAS),

∴AB=A′B′.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】若把不等式組的解集在數(shù)軸上表示出來,則其對應的圖形為

A. 長方形 B. 線段 C. 射線 D. 直線

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC三個頂點的坐標分別為A(1,1),B(4,2),C(3,4).

(1) 請畫出ABC向左平移5個單位長度后得到的ABC;

(2) 請畫出ABC關于原點對稱的ABC

(3) 在軸上求作一點P,使PAB的周長最小,請畫出PAB,并直接寫P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,以△ABC的邊AB為直徑作⊙O,交邊BC于點D,點E是 上一點.
(1)若AC為⊙O的切線,試說明:∠AED=∠CAD;
(2)若AE平分∠BAD,延長DE、AB交于點P,若PB=BO,DE=2,求PD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列運算正確的是(
A. =
B. =﹣3
C.a?a2=a2
D.(2a32=4a6

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在△ABC、△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,點C、D、E三點在同一直線上,連接BD.

(1)求證:△BAD≌△CAE;

(2)試猜想BD、CE有何特殊位置關系,并證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知AOB是一個直角,作射線OC,再分別作AOCBOC的平分線OD,OE

(1) 如圖1,當BOC=70°時,求DOE的度數(shù).

(2) 如圖2,當射線OCAOB內繞點O旋轉時,DOE的大小是否發(fā)生變化?說明理由.

(3) 當射線OCAOB外繞點O旋轉且AOC為鈍角時,畫出圖形,直接寫出相應的DOE的度數(shù).(不必寫出過程)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖 1,點 A(2,1),點 A 與點 B 關于 y 軸對稱,ACy 軸,且 AC=3,連接 BC y 軸于點 D.

1)點 B 的坐標為_____,點 C 的坐標為_____

2)如圖 2,連接 OCOC 平分∠ACB,求證:OBOC

3)如圖 3,在(2)的條件下,點 P OC 上一點,且∠PAC=45°,求點 P 的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知在△ABC中,AD、BD分別平分∠CAG、∠EBA,AD∥BC,BDACF,連接CD,

(1)求證:AB=AC.

(2)當∠EBA的大小滿足什么條件時,以A,B,F(xiàn)為頂點三角形為等腰三角形?

(3)猜想∠BDC∠DAC之間的數(shù)量關系式,并說明理由.

查看答案和解析>>

同步練習冊答案