【題目】如圖,點C在以AB為直徑的⊙O上,過C作⊙O的切線交AB的延長線于E , AD⊥CE于D , 連結(jié)AC.
(1)求證:AC平分∠BAD.
(2)若tan∠CAD= ,AD=8,求⊙O直徑AB的長.
【答案】
(1)
證明:(1)連結(jié)OC
∵CE是⊙O的切線。
∴OC⊥CD
∵AD⊥CE
∴AD//OC
∵OA=OC
∴∠DAC=∠ACO=∠CAO
∴AC平分∠BAD
(2)
∵AD⊥CE,tan∠CAD= ,AD=8 ∴CD=6 ∴AC=10
∵ AB是⊙O的直徑! ∠ACB=90°=∠ D,∵∠DAC=∠CAO
∴ △ACD∽△ABC ∴ AB:AC=AC:AD
∴AB=
【解析】本題重點考查三角形的相似等知識點,利用相似比求得相應項段的長度。
【考點精析】本題主要考查了相似三角形的性質(zhì)和相似三角形的判定與性質(zhì)的相關(guān)知識點,需要掌握對應角相等,對應邊成比例的兩個三角形叫做相似三角形;相似三角形的一切對應線段(對應高、對應中線、對應角平分線、外接圓半徑、內(nèi)切圓半徑等)的比等于相似比;相似三角形周長的比等于相似比;相似三角形面積的比等于相似比的平方才能正確解答此題.
科目:初中數(shù)學 來源: 題型:
【題目】已知f(x)=(x2﹣2ax)lnx+2ax﹣ x2 , 其中a∈R.
(1)若a=0,且曲線f(x)在x=t處的切線l過原點,求直線l的方程;
(2)求f(x)的極值;
(3)若函數(shù)f(x)有兩個極值點x1 , x2(x1<x2),證明f(x1)+f(x2)< a2+3a.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在直角坐標系xOy中,曲線C的參數(shù)方程為: ,以O(shè)為極點,x軸的非負半軸為極軸建立極坐標系. (Ⅰ)求曲線C的極坐標方程;
(Ⅱ)已知直線l1: ,射線 與曲線C的交點為P,l2與直線l1的交點為Q,求線段PQ的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】三棱錐P﹣ABC的三條側(cè)棱兩兩垂直,且PA=PB=PC=1,則其外接球上的點到平面ABC的距離的最大值為( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知a≥0,函數(shù)f(x)=(x2﹣2ax)ex .
(1)當x為何值時,f(x)取得最小值?證明你的結(jié)論;
(2)設(shè)f(x)在[﹣1,1]上是單調(diào)函數(shù),求a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在ABCD中,點E、F分別在邊AD、BC上,且EF∥CD,G為邊AD延長線上一點,連接BG,則圖中與△ABG相似的三角形有( )個.
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了了解某水庫養(yǎng)殖魚的有關(guān)情況,從該水庫多個不同位置捕撈出200條魚,稱得每條魚的質(zhì)量(單位:千克),并將所得數(shù)據(jù)分組,繪制了直方圖
(1)根據(jù)直方圖提供的信息,這組數(shù)據(jù)的中位數(shù)落在范圍內(nèi);
(2)估計數(shù)據(jù)落在1.00~1.15中的頻率是;
(3)將上面捕撈的200條魚分別作一記號后再放回水庫.幾天后再從水庫的多處不同的位置捕撈150條魚,其中帶有記號的魚有10條,請根據(jù)這一情況估算該水庫中魚的總條數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,Rt△ABC中,∠ACB=90°,AC=4,BC=3,若把直角三角形繞邊AB所在直線旋轉(zhuǎn)一周,則所得幾何體的表面積為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某學校為了解七年級男生體質(zhì)健康情況,隨機抽取若干名男生進行測試,測試結(jié)果分為優(yōu)秀、良好、合格、不合格四個等級,統(tǒng)計整理數(shù)據(jù)并繪制圖1、圖2兩幅不完整的統(tǒng)計圖,請根據(jù)圖中信息回答下列問題:
(1)本次接收隨機抽樣調(diào)查的男生人數(shù)為 人,扇形統(tǒng)計圖中“良好”所對應的圓心角的度數(shù)為 。
(2)補全條形統(tǒng)計圖中“優(yōu)秀”的空缺部分。
(3)若該校七年級共有男生480人,請估計全年級男生體質(zhì)健康狀況達到“良好”的人數(shù)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com