如圖,已知拋物線y=ax2+bx+3與x軸交于A、B兩點,過點A的直線l與拋物線交于點C,其中A點的坐標是(1,0),C點坐標是(4,3).

(1)求拋物線的解析式;

(2)在(1)中拋物線的對稱軸上是否存在點D,使△BCD的周長最?若存在,求出點D的坐標,若不存在,請說明理由;

(3)若點E是(1)中拋物線上的一個動點,且位于直線AC的下方,試求△ACE的最大面積及E點的坐標.

 

【答案】

解:(1)∵拋物線y=ax2+bx+3經(jīng)過點A(1,0),點C(4,3),

,解得。

∴拋物線的解析式為y=x2﹣4x+3。

(2)存在。

∵點A、B關(guān)于對稱軸對稱,∴點D為AC與對稱軸的交點時△BCD的周長最小。

∵y=x2﹣4x+3=(x﹣2)2﹣1,∴拋物線的對稱軸為直線x=2。

設(shè)直線AC的解析式為y=kx+b(k≠0),

,解得:。

∴直線AC的解析式為y=x﹣1。

當x=2時,y=2﹣1=1。

∴拋物線對稱軸上存在點D(2,1),使△BCD的周長最小。

(3)如圖,設(shè)過點E與直線AC平行線的直線為y=x+m,

聯(lián)立,消掉y得,x2﹣5x+3﹣m=0。

由△=(﹣5)2﹣4×1×(3﹣m)=0得m=。

∴m=時,點E到AC的距離最大,△ACE的面積最大。

此時x=,y=。

∴點E的坐標為()。

設(shè)過點E的直線與x軸交點為F,則F(,0)。

∴AF=。

∵直線AC的解析式為y=x﹣1,∴∠CAB=45°。

∴點F到AC的距離為

又∵。

∴△ACE的最大面積,此時E點坐標為(,)。

【解析】

試題分析:(1)利用待定系數(shù)法求二次函數(shù)解析式解答即可。

(2)利用待定系數(shù)法求出直線AC的解析式,然后根據(jù)軸對稱確定最短路線問題,直線AC與對稱軸的交點即為所求點D。

(3)根據(jù)直線AC的解析式,設(shè)出過點E與AC平行的直線,然后與拋物線解析式聯(lián)立消掉y得到關(guān)于x的一元二次方程,利用根的判別式△=0時,△ACE的面積最大,然后求出此時與AC平行的直線,然后求出點E的坐標,并求出該直線與x軸的交點F的坐標,再求出AF,再根據(jù)直線l與x軸的夾角為45°求出兩直線間的距離,再求出AC間的距離,然后利用三角形的面積公式列式計算即可得解。

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線與x軸交于A(-1,0)、B(4,0)兩點,與y軸交于點精英家教網(wǎng)C(0,3).
(1)求拋物線的解析式;
(2)求直線BC的函數(shù)解析式;
(3)在拋物線上,是否存在一點P,使△PAB的面積等于△ABC的面積,若存在,求出點P的坐標,若不存在,請說明理由.
(4)點Q是直線BC上的一個動點,若△QOB為等腰三角形,請寫出此時點Q的坐標.(可直接寫出結(jié)果)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線y=ax2+bx+c(a≠0)的對稱軸為x=1,且拋物線經(jīng)過A(-1,0)精英家教網(wǎng)、C(0,-3)兩點,與x軸交于另一點B.
(1)求這條拋物線所對應(yīng)的函數(shù)關(guān)系式;
(2)在拋物線的對稱軸x=1上求一點M,使點M到點A的距離與到點C的距離之和最小,并求出此時點M的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•衡陽)如圖,已知拋物線經(jīng)過A(1,0),B(0,3)兩點,對稱軸是x=-1.
(1)求拋物線對應(yīng)的函數(shù)關(guān)系式;
(2)動點Q從點O出發(fā),以每秒1個單位長度的速度在線段OA上運動,同時動點M從O點出發(fā)以每秒3個單位長度的速度在線段OB上運動,過點Q作x軸的垂線交線段AB于點N,交拋物線于點P,設(shè)運動的時間為t秒.
①當t為何值時,四邊形OMPQ為矩形;
②△AON能否為等腰三角形?若能,求出t的值;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=1,且拋物線經(jīng)過A(-1,0)、C(0,-3)兩點,與x軸交于另一點B.
(1)求這條拋物線所對應(yīng)的函數(shù)關(guān)系式;
(2)點P是拋物線對稱軸上一點,若△PAB∽△OBC,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線y=ax2+bx+c的頂點是(-1,-4),且與x軸交于A、B(1,0)兩點,交y軸于點C;
(1)求此拋物線的解析式;
(2)①當x的取值范圍滿足條件
-2<x<0
-2<x<0
時,y<-3;
     ②若D(m,y1),E(2,y2)是拋物線上兩點,且y1>y2,求實數(shù)m的取值范圍;
(3)直線x=t平行于y軸,分別交線段AC于點M、交拋物線于點N,求線段MN的長度的最大值;
(4)若以拋物線上的點P為圓心作圓與x軸相切時,正好也與y軸相切,求點P的坐標.

查看答案和解析>>

同步練習(xí)冊答案