【題目】如圖,已知點(diǎn)A是雙曲線在第三象限分支上的一個(gè)動(dòng)點(diǎn),連結(jié)AO并延長交另一分支于點(diǎn)B,以AB為邊作等邊三角形ABC,點(diǎn)C在第四象限內(nèi),且隨著點(diǎn)A的運(yùn)動(dòng),點(diǎn)C的位置也在不斷變化,但點(diǎn)C始終在雙曲線上運(yùn)動(dòng),則k的值是 .
【答案】.
【解析】
試題分析:∵雙曲線的圖象關(guān)于原點(diǎn)對(duì)稱,∴點(diǎn)A與點(diǎn)B關(guān)于原點(diǎn)對(duì)稱,∴OA=OB,連接OC,如圖所示,∵△ABC是等邊三角形,OA=OB,∴OC⊥AB.∠BAC=60°,∴tan∠OAC==,∴OC=OA,過點(diǎn)A作AE⊥y軸,垂足為E,過點(diǎn)C作CF⊥y軸,垂足為F,∵AE⊥OE,CF⊥OF,OC⊥OA,
∴∠AEO=∠OFC,∠AOE=90°﹣∠FOC=∠OCF,∴△OFC∽△AEO,相似比=,∴面積比=3,∵點(diǎn)A在第一象限,設(shè)點(diǎn)A坐標(biāo)為(a,b),∵點(diǎn)A在雙曲線上,∴S△AEO=ab=,∴S△OFC=FCOF=,∴設(shè)點(diǎn)C坐標(biāo)為(x,y),∵點(diǎn)C在雙曲線上,∴k=xy,∵點(diǎn)C在第四象限,∴FC=x,OF=﹣y,∴FCOF=x(﹣y)=﹣xy=,故答案為:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是⊙O的內(nèi)接四邊形,AD的延長線與BC的延長線相交于點(diǎn)E,DC=DE.
(1)求證:∠A=∠AEB;
(2)如果DC⊥OE,求證:△ABE是等邊三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我國自主研發(fā)的“天宮二號(hào)”對(duì)接成功,標(biāo)志著我國航天事業(yè)又上了一個(gè)新臺(tái)階,“天宮二號(hào)”火箭的飛行速度約為每秒8千米,也就是28800千米/時(shí),“28800”用科學(xué)記數(shù)法表示為( )
A. 2.88×102 B. 28.8×103 C. 2.88×104 D. 0.288×105
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)E是BC的中點(diǎn),AB⊥BC,DC⊥BC,AE平分∠BAD,下列結(jié)論:
①∠AED=90° ②∠ADE=∠CDE ③DE=BE ④AD=AB+CD,
四個(gè)結(jié)論中成立的是( )
A.①②④
B.①②③
C.②③④
D.①③
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,有A、B、C三個(gè)居民小區(qū)的位置成三角形,現(xiàn)決定在三個(gè)小區(qū)之間修建一個(gè)購物超市,使超市到三個(gè)小區(qū)的距離相等,則超市應(yīng)建在( )
A.在AC,BC兩邊高線的交點(diǎn)處
B.在AC,BC兩邊中線的交點(diǎn)處
C.在AC,BC兩邊垂直平分線的交點(diǎn)處
D.在∠A,∠B兩內(nèi)角平分線的交點(diǎn)處
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把兩個(gè)含有45°角的直角三角板如圖放置,點(diǎn)D在AC上,連接AE、BD,試判斷AE與BD的關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是函數(shù) 與函數(shù) 在第一象限內(nèi)的圖象,點(diǎn)P是 的圖象上一動(dòng)點(diǎn),PA⊥x軸于點(diǎn)A , 交 的圖象于點(diǎn)C, PB⊥y軸于點(diǎn)B , 交 的圖象于點(diǎn)D.
(1)求證:D是BP的中點(diǎn);
(2)求出四邊形ODPC的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com