【題目】如圖,將一個邊長分別為4,8的長方形紙片ABCD折疊,使C點與A點重合,
求 (1)AE的長.(2)折痕EF的長.
【答案】(1)5;(2)2.
【解析】
(1)根據(jù)折疊的性質得到AE=CE,根據(jù)勾股定理即可得到結論
(2)先過點F作FG⊥BC于G.利用勾股定理可求出AE,再利用翻折變換的知識,可得到AE=CE,∠AEF=∠CEF,再利用平行線可得∠AEF=∠AFE,故有AE=AF.求出EG,再次使用勾股定理可求出EF的長.
(1)∵將長方形紙片ABCD折疊,使C點與A點重合,
∴AE=CE,
∴BE=BC-CE=BC-AE=8-AE,
∵∠B=90°,
∴AB2+BE2=AE2,
即42+(8-AE)2=AE2,
∴AE=5;
(2)過點F作FG⊥BC于G,
∵EF是直角梯形AECD的折痕,
∴AE=CE,∠AEF=∠CEF,
又∵AD∥BC,
∴∠CEF=∠AFE,
∵∠CEF=∠AEF,
∴∠AEF=∠AFE,
∴AE=AF,
在Rt△ABE中,
設BE=x,AB=4,AE=CE=8-x.x2+42=(8-x)2,
解得x=3,
在Rt△FEG中,EG=BG-BE=AF-BE=AE-BE=5-3=2,F(xiàn)G=4,
∴EF==2.
科目:初中數(shù)學 來源: 題型:
【題目】已知邊長為4的正方形ABCD,頂點A與坐標原點重合,一反比例函數(shù)圖象過頂點C,動點P以每秒1個單位速度從點A出發(fā)沿AB方向運動,動點Q同時以每秒4個單位速度從D點出發(fā)沿正方形的邊DC﹣CB﹣BA方向順時針折線運動,當點P與點Q相遇時停止運動,設點P的運動時間為t.
(1)求出該反比例函數(shù)解析式;
(2)連接PD,當以點Q和正方形的某兩個頂點組成的三角形和△PAD全等時,求點Q的坐標;
(3)用含t的代數(shù)式表示以點Q、P、D為頂點的三角形的面積s,并指出相應t的取值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如果有一列數(shù),從這列數(shù)的第2個數(shù)開始,每一個數(shù)與它的前一個數(shù)的比等于同一個非零的常數(shù),這樣的一列數(shù)就叫做等比數(shù)列(Geometric Sequences).這個常數(shù)叫做等比數(shù)列的公比,通常用字母q表示(q≠0).
(1)觀察一個等比列數(shù)1,,…,它的公比q= ;如果an(n為正整數(shù))表示這個等比數(shù)列的第n項,那么a18= ,an= ;
(2)如果欲求1+2+4+8+16+…+230的值,可以按照如下步驟進行:
令S=1+2+4+8+16+…+230…①
等式兩邊同時乘以2,得2S=2+4+8+16++32+…+231…②
由② ﹣ ①式,得2S﹣S=231﹣1
即(2﹣1)S=231﹣1
所以
請根據(jù)以上的解答過程,求3+32+33+…+323的值;
(3)用由特殊到一般的方法探索:若數(shù)列a1,a2,a3,…,an,從第二項開始每一項與前一項之比的常數(shù)為q,請用含a1,q,n的代數(shù)式表示an;如果這個常數(shù)q≠1,請用含a1,q,n的代數(shù)式表示a1+a2+a3+…+an.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在航線l的兩側分別有觀測點A和B,點B到航線l的距離BD為4km,點A位于點B北偏西60°方向且與B相距20km處.現(xiàn)有一艘輪船從位于點A南偏東74°方向的C處,沿該航線自東向西航行至觀測點A的正南方向E處.求這艘輪船的航行路程CE的長度.(結果精確到0.1km)(參考數(shù)據(jù):≈1.73,sin74°≈0.96,cos74°≈0.28,tan74°≈3.49)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知△ABC,以AC為邊在△ABC外作等腰△ACD,其中AC=AD.
(1)如圖1,若∠DAC=2∠ABC,AC=BC,四邊形ABCD是平行四邊形,則∠ABC= ;
(2)如圖2,若∠ABC=30°,△ACD是等邊三角形,AB=3,BC=4.求BD的長;
(3)如圖3,若∠ABC=30°,∠ACD=45°,AC=2,B、D之間距離是否有最大值?如有求出最大值;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點O為直線AB上一點,過點O作射線OC,使∠BOC=135°,將一個含45°角的直角三角板的一個頂點放在點O處,斜邊OM與直線AB重合,另外兩條直角邊都在直線AB的下方.
(1)將圖1中的三角板繞著點O逆時針旋轉90°,如圖2所示,此時∠BOM= ;在圖2中,OM是否平分∠CON?請說明理由;
(2)接著將圖2中的三角板繞點O逆時針繼續(xù)旋轉到圖3的位置所示,使得ON在∠AOC的內(nèi)部,請?zhí)骄浚?/span>∠AOM與∠CON之間的數(shù)量關系,并說明理由;
(3)將圖1中的三角板繞點O按每秒4.5°的速度沿逆時針方向旋轉一周,在旋轉的過程中,當旋轉到第 秒時,∠COM與∠CON互補.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】利用無刻度的直尺和圓規(guī)作出符合要求的圖形.(注:不要求寫作法,但保留作圖痕跡)
(1)如圖,已知線段AB,作一個△ABC,使得∠ACB=90°;(只需畫一個即可)
(2)如圖,已知線段MN,作一個△MPN,使得∠MPN=90°且sinM=.(只需畫一個即可)
(1) (2)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖在等邊△ABC中,點D.E分別在邊BC,AB上,且BD=AE,AD與CE交于點F.
(1)求證:AD=CE
(2)求∠DFC的度數(shù)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com