【題目】在一次海上救援中,兩艘專業(yè)救助船同時收到某事故漁船的求救訊息,已知此時救助船的正北方向,事故漁船在救助船的北偏西30°方向上,在救助船的西南方向上,且事故漁船與救助船相距120海里.

1)求收到求救訊息時事故漁船與救助船之間的距離;

2)若救助船A,分別以40海里/小時、30海里/小時的速度同時出發(fā),勻速直線前往事故漁船處搜救,試通過計算判斷哪艘船先到達(dá).

【答案】1)收到求救訊息時事故漁船與救助船之間的距離為海里;(2)救助船先到達(dá).

【解析】

(1)如圖,作,在△PAC中先求出PC的長,繼而在△PBC中求出BP的長即可;

(2)根據(jù)“時間=路程÷速度分別求出救助船A和救助船B所需的時間,進行比較即可.

(1)如圖,作

,

由題意得:海里,,

海里,是等腰直角三角形,

海里,海里,

答:收到求救訊息時事故漁船與救助船之間的距離為海里;

(2)∵海里,海里,救助船分別以40海里/小時、30海里/小時的速度同時出發(fā),

救助船所用的時間為(小時),

救助船所用的時間為(小時)

,

救助船先到達(dá).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線軸交于點,與軸交于點,拋物線經(jīng)過點,.

(1)求點B的坐標(biāo)和拋物線的解析式;

(2)M(m,0)為x軸上一個動點,過點M垂直于x軸的直線與直線AB和拋物線分別交于點P、N,

在線段上運動,若以,為頂點的三角形與相似,求點的坐標(biāo);

軸上自由運動,若三個點,中恰有一點是其它兩點所連線段的中點(三點重合除外),則稱,,三點為共諧點.請直接寫出使得,三點成為共諧點的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠C90°,AC8,BC16,點D在邊BC上,沿DE將△ABC折疊,使點B與點A重合,連接AD,點P在線段AD上,當(dāng)點P到△ABC的直角邊距離等于5時,AP的長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點是矩形兩條對角線的交點,E是邊上的點,沿折疊后,點恰好與點重合.若,則折痕的長為 ( )

A. B. C. D. 6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:都是等邊三角形,點在邊上,連接

1)如圖1,求證:;

2)如圖2,點上,),連接并延長交于點,連接,在不添加任何輔助線的情況下,請直接寫出圖2中所有與線段相等的線段(線段除外).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我市某校組織學(xué)經(jīng)典,用經(jīng)典知識競賽,每班參加比賽的學(xué)生人數(shù)相同,成績分為四個等級,其中相應(yīng)等級的得分依次記為分,分,分,分,學(xué)校將某年級的一班和二班的成績整理并繪制成如下的統(tǒng)計圖:

請你根據(jù)以上提供的信息解答下列問題:

1)此次競賽中二班成績的人數(shù)為

2)請你將下表補充完整:

平均數(shù)()

中位數(shù)()

眾數(shù)()

一班

二班

3)請你對這次兩班成績統(tǒng)計數(shù)據(jù)的結(jié)果進行分析(寫出一條結(jié)論即可)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某數(shù)學(xué)活動小組為了解全縣九年級學(xué)生在抗新冠病毒疫情期間平均每天居家鍛煉時間,向全縣部分學(xué)生進行了抽樣調(diào)查,并將收集到的數(shù)據(jù)整理成如圖的統(tǒng)計圖(部分?jǐn)?shù)據(jù)未標(biāo)出).

1)這次抽樣調(diào)查的學(xué)生人數(shù)一共有 人;

2)求頻數(shù)分布表中 a 的值,并補全頻數(shù)分布直方圖; ,

3)若該縣有 5000 名九年級學(xué)生,請你估計全縣九年級學(xué)生平均每天居家鍛煉時間不超過20分鐘的有多少人?

時間 x/

人數(shù)/

頻率

0x≤10

102

25.5%

10x≤20

132

33%

20x≤30

a

17.5%

30x≤40

59

14.75%

40x≤50

29

7.25%

50x≤60

8

2%

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線軸交于A、B兩點,與軸交于點C,四邊形OBHC為矩形,CH的延長線交拋物線于點D(5,-2),連接BC、AD

(1)將矩形OBHC繞點B按逆時針旋轉(zhuǎn)90°后,再沿軸對折到矩形GBFE(C與點E對應(yīng),點O與點G對應(yīng)),求點E的坐標(biāo);

(2)設(shè)過點E的直線交AB于點P,交CD于點Q

①當(dāng)四邊形PQCB為平行四邊形時,求點P的坐標(biāo);

②是否存在點P,使直線PQ分梯形ADCB的面積為13兩部分?若存在,求出點P坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC內(nèi)接于⊙O,且AB為⊙O的直徑.∠ACB的平分線交⊙O于點D,過點D作⊙O的切線PDCA的延長線于點P,過點AAECD于點E,過點BBFCD于點F

1)求證:EF +AE= BF ;

2)求證:△PDA∽△PCD

3)若AC=6,BC=8,求線段PD的長.

查看答案和解析>>

同步練習(xí)冊答案