如圖,在平行四邊形ABCD中,AB=4,∠BAD的平分線與BC的延長線交于點E,與DC交于點F,且點F為邊DC的中點,DG⊥AE,垂足為G,若DG=1,則AE的邊長為( 。
A.2 B.4 C.4 D.8
考點:平行四邊形的性質(zhì);等腰三角形的判定與性質(zhì);含30度角的直角三角形;勾股定理.
專題:計算題.
分析:由AE為角平分線,得到一對角相等,再由ABCD為平行四邊形,得到AD與BE平行,利用兩直線平行內(nèi)錯角相等得到一對角相等,等量代換及等角對等邊得到AD=DF,由F為DC中點,AB=CD,求出AD與DF的長,得出三角形ADF為等腰三角形,根據(jù)三線合一得到G為AF中點,在直角三角形ADG中,由AD與DG的長,利用勾股定理求出AG的長,進而求出AF的長,再由三角形ADF與三角形ECF全等,得出AF=EF,即可求出AE的長.
解答:解:∵AE為∠ADB的平分線,
∴∠DAE=∠BAE,
∵DC∥AB,
∴∠BAE=∠DFA,
∴∠DAE=∠DFA,
∴AD=FD,
又F為DC的中點,
∴DF=CF,
∴AD=DF=DC=AB=2,
在Rt△ADG中,根據(jù)勾股定理得:AG=,
則AF=2AG=2,
在△ADF和△ECF中,
,
∴△ADF≌△ECF(AAS),
∴AF=EF,
則AE=2AF=4.
故選B
點評:此題考查了平行四邊形的性質(zhì),全等三角形的判定與性質(zhì),勾股定理,等腰三角形的判定與性質(zhì),熟練掌握平行四邊形的判定與性質(zhì)是解本題的關(guān)鍵.
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
2 |
3 |
5 |
A、AC⊥BD |
B、四邊形ABCD是菱形 |
C、△ABO≌△CBO |
D、AC=BD |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com