已知二次函數(shù)y=ax2+bx+c(其中a是正整數(shù))的圖象經(jīng)過點A(-1,4)與點B(2,1),并且與x軸有兩個不同的交點,則b+c的最大值為   
【答案】分析:根據(jù)已知條件得到關(guān)于a,b,c的方程組,用a表示b和c,根據(jù)與x軸有兩個不同的交點,求得a的取值范圍,再進(jìn)一步分析b+c的最大值.
解答:解:由于二次函數(shù)的圖象過點A(-1,4),點B(2,1),
所以
解得
因為二次函數(shù)圖象與x軸有兩個不同的交點,
所以△=b2-4ac>0,
(-a-1)2-4a(3-2a)>0,即(9a-1)(a-1)>0,
由于a是正整數(shù),故a≥2,
又因為b+c=-3a+2≤-4,
故b+c的最大值為-4.
故答案為-4.
點評:在已知兩個三元一次方程的時候,要善于用一個字母表示其它的字母,根據(jù)其中一個字母的取值范圍來確定要求的代數(shù)式的取值范圍.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

21、已知二次函數(shù)y=a(x+1)2+c的圖象如圖所示,則函數(shù)y=ax+c的圖象只可能是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知二次函數(shù)y=ax+bx+c的圖象與x軸交于點A.B,與y軸交于點 C.

(1)寫出A. B.C三點的坐標(biāo);(2)求出二次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013-2014學(xué)年廣東省廣州市海珠區(qū)九年級上學(xué)期期末數(shù)學(xué)試卷(解析版) 題型:選擇題

已知二次函數(shù)y=ax²+bx+c(a≠0)的圖像如圖所示,則下列結(jié)論中正確的是(   )

A.a>0             B.3是方程ax²+bx+c=0的一個根

C.a+b+c=0          D.當(dāng)x<1時,y隨x的增大而減小

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

已知二次函數(shù)y=ax+bx+c(a≠0,a,b,c為常數(shù)),對稱軸為直線x=1,它的部分自變量與函數(shù)值y的對應(yīng)值如下表,寫出方程ax2+bx+c=0的一個正數(shù)解的近似值________(精確到0.1).
x-0.1-0.2-0.3-0.4
y=ax2+bx+c-0.58-0.120.380.92

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)y=ax²+bx+c(c≠0)的圖像如圖4所示,下列說法錯誤的是:

(A)圖像關(guān)于直線x=1對稱

(B)函數(shù)y=ax²+bx+c(c ≠0)的最小值是 -4

(C)-1和3是方程ax²+bx+c=0(c ≠0)的兩個根

(D)當(dāng)x<1時,y隨x的增大而增大

查看答案和解析>>

同步練習(xí)冊答案