【題目】小華是一位善于思考的學(xué)生,在一次數(shù)學(xué)活動(dòng)課上,他將一副直角三角板如圖位置擺放,ABD在同一直線上,EFAD,∠CAB=∠EDF=90°,∠C=45°,∠E=60°,量得DE=2.則BD_____

【答案】3

【解析】

過點(diǎn)FFMADM,利用在直角三角形中,30°角所對(duì)的直角邊等于斜邊的一半和平行線的性質(zhì)以及等腰直角三角形的性質(zhì)即可求出BD的長(zhǎng).

過點(diǎn)FFMADM,

∵∠EDF=90°,E=60°,

∴∠EFD=30°,

DE=2

EF=4,

DF=,

EFAD,

∴∠FDM=30°,

FM=DF=,

MD=,

∵∠C=45°,

∴∠MFB=B=45°,

FM=BM=

BD=DM﹣BM=3

故答案為:3

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】端午節(jié)放假期間,小明和小華準(zhǔn)備到宜賓的蜀南竹海(記為A)、興文石海(記為B)、夕佳山居民(記為C)、李莊古鎮(zhèn)(記為D)中的一個(gè)景點(diǎn)去游玩,他們各自在這四個(gè)景點(diǎn)中任選一個(gè),每個(gè)景點(diǎn)被選中的可能性相同.

(1)小明選擇去蜀南竹海旅游的概率為________;

(2)用畫樹狀圖或列表的方法求小明和小華都選擇去興文石海旅游的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(2017浙江省嘉興市,第20題,8分)如圖,一次函數(shù))與反比例函數(shù)的圖象交于點(diǎn)A(﹣1,2),Bm,﹣1).

(1)求這兩個(gè)函數(shù)的表達(dá)式;

(2)在x軸上是否存在點(diǎn)Pn,0)(n>0),使ABP為等腰三角形?若存在,求n的值;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)C是線段AB上除點(diǎn)A、B外的任意一點(diǎn),分別以AC、BC為邊在線段AB的同旁作等邊△ACD和等邊△BCE,連接AEDCM,連接BDCEN,連接MN

1)求證:AEBD;

2)請(qǐng)判斷△CMN的形狀,并說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC的周長(zhǎng)為32,點(diǎn)D、E都在邊BC上,∠ABC的平分線垂直于AE,垂足為Q,∠ACB的平分線垂直于AD,垂足為P,若BC12,則PQ的長(zhǎng)為( 。

A.3B.4C.5D.6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠BAC90°,AD是中線,EAD的中點(diǎn),過點(diǎn)AAFBCBE的延長(zhǎng)線于點(diǎn)F,連接CF

1)求證:ADCF

2)如果ABAC,四邊形ADCF的形狀為   (直接寫出結(jié)果);

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形OABC的頂點(diǎn)O是坐標(biāo)原點(diǎn),邊OAOC分別在x軸、y軸上,點(diǎn)B的坐標(biāo)為(4,4).直線l經(jīng)過點(diǎn)C

1)若直線l與邊OA交于點(diǎn)M,過點(diǎn)A作直線l的垂線,垂足為D,交y軸于點(diǎn)E

如圖1,當(dāng)OE1時(shí),求直線l對(duì)應(yīng)的函數(shù)表達(dá)式;

如圖2,連接OD,求證:OD平分∠CDE

2)如圖3,若直線l與邊AB交于點(diǎn)P,且SBCPS四邊形AOCP,此時(shí),在x軸上是否存在點(diǎn)Q,使△CPQ是以CP為直角邊的直角三角形?若存在,求點(diǎn)Q的坐標(biāo),若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在Rt△ABC中,C=90°,AC=BC=2,點(diǎn)D、E分別在邊AC、AB上,AD=DE=AB,連接DE.將ADE繞點(diǎn)A逆時(shí)針方向旋轉(zhuǎn),記旋轉(zhuǎn)角為θ.

(1)問題發(fā)現(xiàn)

當(dāng)θ=0°時(shí),= ;

當(dāng)θ=180°時(shí),=

(2)拓展探究

試判斷:當(dāng)0°≤θ<360°時(shí),的大小有無變化?請(qǐng)僅就圖2的情形給出證明;

(3)問題解決

在旋轉(zhuǎn)過程中,BE的最大值為

當(dāng)ADE旋轉(zhuǎn)至B、D、E三點(diǎn)共線時(shí),線段CD的長(zhǎng)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是規(guī)格為的正方形網(wǎng)格,請(qǐng)?jiān)谒o網(wǎng)格中按下列要求操作:

(1)請(qǐng)?jiān)诰W(wǎng)格中建立平面直角坐標(biāo)系,使點(diǎn)A的坐標(biāo)為,點(diǎn)的坐標(biāo)為;

(2)在第二象限內(nèi)的格點(diǎn)上找一點(diǎn),使點(diǎn)與線段組成一個(gè)以為底的等腰三角形,且腰長(zhǎng)是無理數(shù),畫出,則點(diǎn)的坐標(biāo)是 ,的周長(zhǎng)是 (結(jié)果保留根號(hào));

(3)作出關(guān)于軸對(duì)稱的.

查看答案和解析>>

同步練習(xí)冊(cè)答案