【題目】中,邊的中線,,連結(jié),點(diǎn)在射線上(與,不重合)

1)如果

①如圖1,   

②如圖2,點(diǎn)在線段上,連結(jié),將線段繞點(diǎn)逆時針旋轉(zhuǎn),得到線段,連結(jié),補(bǔ)全圖2猜想、之間的數(shù)量關(guān)系,并證明你的結(jié)論;

2)如圖3,若點(diǎn)在線段 的延長線上,且,連結(jié),將線段繞點(diǎn)逆時針旋轉(zhuǎn)得到線段,連結(jié),請直接寫出、三者的數(shù)量關(guān)系(不需證明)

【答案】1)①60;②.理由見解析;(2,理由見解析.

【解析】

1)①根據(jù)直角三角形斜邊中線的性質(zhì),結(jié)合,只要證明是等邊三角形即可;

②根據(jù)全等三角形的判定推出,根據(jù)全等的性質(zhì)得出,

2)如圖2,求出,,求出,,根據(jù)全等三角形的判定得出,求出,推出,解直角三角形求出即可.

解:(1)①∵,

,

,

是等邊三角形,

故答案為60.

②如圖1,結(jié)論:.理由如下:

的中點(diǎn),,

,

,,

,

,

,

∵線段繞點(diǎn)逆時針旋轉(zhuǎn)得到線段

,

,

,

2)結(jié)論:

理由:∵,的中點(diǎn),,

,,

,,,

,

,

∵線段繞點(diǎn)逆時針旋轉(zhuǎn)得到線段,

,

,

,

,

,

中,

,

,

,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知如圖,在ABC中,∠B45°,點(diǎn)DBC邊的中點(diǎn),DEBC于點(diǎn)D,交AB于點(diǎn)E,連接CE

1)求∠AEC的度數(shù);

2)請你判斷AEBE、AC三條線段之間的等量關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,函數(shù)的圖象與直線y2x+1交于點(diǎn)A1m.

1)求k、m的值;

2)已知點(diǎn)Pn,0)(n≥1),過點(diǎn)P作平行于y軸的直線,交直線y2x+1于點(diǎn)B,交函數(shù)的圖象于點(diǎn)C.橫、縱坐標(biāo)都是整數(shù)的點(diǎn)叫做整點(diǎn).

①當(dāng)n3時,求線段AB上的整點(diǎn)個數(shù);

②若的圖象在點(diǎn)A、C之間的部分與線段AB、BC所圍成的區(qū)域內(nèi)(包括邊界)恰有5個整點(diǎn),直接寫出n的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線yax2+bx+ca0)的頂點(diǎn)為M,直線ym與拋物線交于點(diǎn)A,B,若AMB為等腰直角三角形,我們把拋物線上A,B兩點(diǎn)之間的部分與線段AB 圍成的圖形稱為該拋物線對應(yīng)的準(zhǔn)蝶形,線段AB稱為碟寬,頂點(diǎn)M 稱為碟頂.

1)由定義知,取AB中點(diǎn)N,連結(jié)MN,MNAB的關(guān)系是_____

2)拋物線y對應(yīng)的準(zhǔn)蝶形必經(jīng)過Bm,m),則m_____,對應(yīng)的碟寬AB_____

3)拋物線yax24aa0)對應(yīng)的碟寬在x 軸上,且AB6

①求拋物線的解析式;

②在此拋物線的對稱軸上是否有這樣的點(diǎn)Pxpyp),使得∠APB為銳角,若有,請求出yp的取值范圍.若沒有,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)yax2+bx+ca≠0)的圖象如圖,有下列6個結(jié)論:

abc<0;

bac;

4a+2b+c>0;

2c<3b;

a+bmam+b),(m≠1的實(shí)數(shù))

2a+b+c>0,其中正確的結(jié)論的有_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線Lyx,點(diǎn)A坐標(biāo)為(0,1),過點(diǎn)Ay軸的垂線交直線L于點(diǎn)B1OB1為邊作等邊三角形OA1B1,再過點(diǎn)A1y軸的垂線交直線L于點(diǎn)B2,以OB2為邊作等邊三角形OA2B2,……,按此做法進(jìn)行下去,點(diǎn)A2019的坐標(biāo)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,DD為⊙O上兩點(diǎn),CFAB于點(diǎn)F,CEADAD的延長線于點(diǎn)E,且CE=CF.

1)求證:CE是⊙O的切線;

2)連接CD、CB,若AD=CD=a,求四邊形ABCD面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD的邊AB上取一點(diǎn)E,連接CE,將△BCE沿CE翻折,點(diǎn)B恰好與對角線AC上的點(diǎn)F重合,連接DF,若BE=2,則△CDF的面積是( 。

A.1B.3C.6D.

查看答案和解析>>

同步練習(xí)冊答案