如圖,一次函數(shù)y1=kx+n(k≠0)與二次函數(shù)y2=ax2+bx+c(a≠0)的圖象相交于A(-1,5)、B(9,2)兩點(diǎn),則關(guān)于x的不等式kx+n≥ax2+bx+c的解集為( )

A.-1≤x≤9
B.-1≤x<9
C.-1<x≤9
D.x≤-1或x≥9
【答案】分析:先觀察圖象確定拋物線y2=ax2+bx+c(a≠0)和一次函數(shù)y1=kx+n(k≠0)的交點(diǎn)的橫坐標(biāo),即可求出y1≥y2時(shí),x的取值范圍.
解答:解:由圖形可以看出:拋物線y2=ax2+bx+c(a≠0)和一次函數(shù)y1=kx+n(k≠0)的交點(diǎn)的橫坐標(biāo)分別為-1,9,
當(dāng)y1≥y2時(shí),x的取值范圍正好在兩交點(diǎn)之內(nèi),即-1≤x≤9.
故選A.
點(diǎn)評(píng):本題考查了二次函數(shù)與不等式(組),此類題可采用“數(shù)形結(jié)合”的思想進(jìn)行解答,這也是速解習(xí)題常用的方法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,一次函數(shù)y1=kx+b的圖象與反比例函數(shù)y2=
m
x
的圖象交于A、B兩點(diǎn),點(diǎn)A、B的橫坐標(biāo)分別為-2、1.當(dāng)y1>y2時(shí),自變量x的取值范圍是(  )
A、-2<x<1
B、0<x<1
C、x<-2和0<x<1
D、-2<x<1和x>1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,一次函數(shù)y1=kx+b(k≠0)的圖象與反比例函數(shù)y2=
mx
 
(m≠0)
的圖象交于二、四象限內(nèi)的A、B兩點(diǎn),過A作AC⊥x軸于點(diǎn)C,連接OA、OB、BC.已知OC=4,tan∠OAC=2,點(diǎn)B的縱坐標(biāo)為-6.
(1)求反比例函數(shù)和直線AB的解析式;
(2)求四邊形OACB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,一次函數(shù)y1=kx+b的圖象與反比例函數(shù)y2=
mx
的圖象相交于A、B兩點(diǎn),試?yán)脠D中條件,求y1和y2的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,一次函數(shù)y1=kx+1(k≠0)與反比例函數(shù)y2=
mx
(m≠0)的圖象有公共點(diǎn)A(1,2).直線l⊥x軸于點(diǎn)N(3,0),與一次函數(shù)和反比例函數(shù)的圖象分別交于點(diǎn)B,C.
(1)求一次函數(shù)與反比例函數(shù)的解析式;
(2)求△ABC的面積?
(3)當(dāng)y1>y2時(shí),請(qǐng)直接寫出x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,一次函數(shù)y1=kx+b與反比例函數(shù)y2=-
6x
交于點(diǎn)A(m,6)、B(3,n).
(1)求一次函數(shù)的關(guān)系式;
(2)求△AOB的面積;
(3)直接寫出y1>y2時(shí)x的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案