【題目】如圖,在△ABC中,AC=BC,∠ACB=90°,點(diǎn)D在BC上,BD=6,DC=2,點(diǎn)P是AB上的動(dòng)點(diǎn),則PC+PD的最小值為( 。
A.8B.10C.12D.14
【答案】B
【解析】
過(guò)點(diǎn)C作CO⊥AB于O,延長(zhǎng)CO到C′,使OC′=OC,連接DC′,交AB于P,連接CP,此時(shí)DP+CP=DP+PC′=DC′的值最。DC=2,BD=6,得到BC=8,連接BC′,由對(duì)稱性可知∠C′BA=∠CBA=45°,于是得到∠CBC′=90°,然后根據(jù)勾股定理即可得到結(jié)論.
解:過(guò)點(diǎn)C作CO⊥AB于O,延長(zhǎng)CO到C′,使OC′=OC,連接DC′,交AB于P,連接CP.
此時(shí)DP+CP=DP+PC′=DC′的值最。
∵DC=2,BD=6,
∴BC=8,
連接BC′,由對(duì)稱性可知∠C′BA=∠CBA=45°,
∴∠CBC′=90°,
∴BC′⊥BC,∠BCC′=∠BC′C=45°,
∴BC=BC′=8,
根據(jù)勾股定理可得DC′=.
故選:B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,∠B=60°,CD是⊙O的直徑,點(diǎn)P是CD延長(zhǎng)線上的一點(diǎn),且AP=AC.
(1)求證:PA是⊙O的切線;
(2)求證:AC2=COCP;
(3)若PD=,求⊙O的直徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,CD⊥AB,垂足為D.下列條件中,能證明△ABC是直角三角形的有 (多選、錯(cuò)選不得分).
①∠A+∠B=90°
②AB2=AC2+BC2
③
④CD2=ADBD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,點(diǎn)O是直線AB上一點(diǎn),OC、OD為從點(diǎn)O引出的兩條射線,∠BOD=30°,∠COD=∠AOC.
(1)如圖①,求∠AOC的度數(shù);
(2)如圖②,在∠AOD的內(nèi)部作∠MON=90°,請(qǐng)直接寫(xiě)出∠AON與∠COM之間的數(shù)量關(guān)系 ;
(3)在(2)的條件下,若OM為∠BOC的角平分線,試說(shuō)明∠AON=∠CON.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,AD⊥BC,EF垂直平分AC,交AC于點(diǎn)F,交BC于點(diǎn)E,且BD=DE,連接AE.
(1)若∠BAE=40°,求∠C的度數(shù);
(2)若△ABC的周長(zhǎng)為16cm,AC=6cm,求DC長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校為研究學(xué)生的課余活動(dòng)情況,采取抽樣的方法,從閱讀、運(yùn)動(dòng)、娛樂(lè)、其它等四個(gè)方面調(diào)查了若干名學(xué)生的興趣愛(ài)好,并將調(diào)查的結(jié)果繪制了如下的兩幅不完整的統(tǒng)計(jì)圖(如圖),請(qǐng)你根據(jù)圖中提供的信息解答下列問(wèn)題:
①這次調(diào)研,一共調(diào)查了 人.
②有閱讀興趣的學(xué)生占被調(diào)查學(xué)生總數(shù)的 %.
③有“其它”愛(ài)好的學(xué)生共多少人?
④補(bǔ)全折線統(tǒng)計(jì)圖.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)y=x2+2bx+c(b、c為常數(shù)).
(Ⅰ)當(dāng)b=1,c=﹣3時(shí),求二次函數(shù)在﹣2≤x≤2上的最小值;
(Ⅱ)當(dāng)c=3時(shí),求二次函數(shù)在0≤x≤4上的最小值;
(Ⅲ)當(dāng)c=4b2時(shí),若在自變量x的值滿足2b≤x≤2b+3的情況下,與其對(duì)應(yīng)的函數(shù)值y的最小值為21,求此時(shí)二次函數(shù)的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列圖形都是由同樣大小的棋子按一定的規(guī)律組成,其中第個(gè)圖形有顆棋子,第個(gè)圖形一共有顆棋子,第個(gè)圖形一共有顆棋子,,則第個(gè)圖形中棋子的顆數(shù)為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(10分)如圖,在△ABC中,AB=AC,D為BC上一點(diǎn),∠B=30°,連接AD.
(1)若∠BAD=45°,求證:△ACD為等腰三角形;
(2)若△ACD為直角三角形,求∠BAD的度數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com