【題目】如圖,在正方形ABCD中,△ABE和△CDF為直角三角形,∠AEB=∠CFD=90°,AE=CF=5,BE=DF=12,則EF的長是( )
A. 7 B. 8 C. 7 D. 7
【答案】A
【解析】
由正方形的性質(zhì)得出∠BAD=∠ABC=∠BCD=∠ADC=90°,AB=BC=CD=AD,由SSS證明△ABE≌△CDF,得出∠ABE=∠CDF,證出∠ABE=∠DAG=∠CDF=∠BCH,由AAS證明△ABE≌△ADG,得出AE=DG,BE=AG,同理:AE=DG=CF=BH=5,BE=AG=DF=CH=12,得出EG=GF=FH=EF=7,證出四邊形EGFH是正方形,即可得出結(jié)果.
如圖所示:
∵四邊形ABCD是正方形,
∴∠BAD=∠ABC=∠BCD=∠ADC=90°,AB=BC=CD=AD,
∴∠BAE+∠DAG=90°,
在△ABE和△CDF中,
,
∴△ABE≌△CDF(SSS),
∴∠ABE=∠CDF,
∵∠AEB=∠CFD=90°,
∴∠ABE+∠BAE=90°,
∴∠ABE=∠DAG=∠CDF,
同理:∠ABE=∠DAG=∠CDF=∠BCH,
∴∠DAG+∠ADG=∠CDF+∠ADG=90°,
即∠DGA=90°,
同理:∠CHB=90°,
在△ABE和△ADG中,
,
∴△ABE≌△ADG(AAS),
∴AE=DG,BE=AG,
同理:AE=DG=CF=BH=5,BE=AG=DF=CH=12,
∴EG=GF=FH=EF=12-5=7,
∵∠GEH=180°-90°=90°,
∴四邊形EGFH是正方形,
∴EF=EG=7;
故選:A.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列材料:
小明遇到一個(gè)問題:已知:如圖1,在△ABC中,∠BAC=120°,∠ABC=40°,試過△ABC的一個(gè)頂點(diǎn)畫一條直線,將此三角形分割成兩個(gè)等腰三角形.
他的做法是:如圖2,首先保留最小角∠C,然后過三角形頂點(diǎn)A畫直線交BC于點(diǎn)D. 將∠BAC分成兩個(gè)角,使∠DAC=20°,△ABC即可被分割成兩個(gè)等腰三角形.
喜歡動(dòng)腦筋的小明又繼續(xù)探究:當(dāng)三角形內(nèi)角中的兩個(gè)角滿足怎樣的數(shù)量關(guān)系時(shí),此三角形一定可以被過頂點(diǎn)的一條直線分割成兩個(gè)等腰三角形.
他的做法是:
如圖3,先畫△ADC ,使DA=DC,延長AD到點(diǎn)B,使△BCD也是等腰三角形,如果DC=BC,那么∠CDB =∠ABC,因?yàn)椤?/span>CDB=2∠A,所以∠ABC= 2∠A.于是小明得到了一個(gè)結(jié)論:
當(dāng)三角形中有一個(gè)角是最小角的2倍時(shí),則此三角形一定可以被過頂點(diǎn)的一條直線分割成兩個(gè)等腰三角形.
請(qǐng)你參考小明的做法繼續(xù)探究:當(dāng)三角形內(nèi)角中的兩個(gè)角滿足怎樣的數(shù)量關(guān)系時(shí),此三角形一定可以被過頂點(diǎn)的一條直線分割成兩個(gè)等腰三角形.請(qǐng)直接寫出你所探究出的另外兩條結(jié)論(不必寫出探究過程或理由).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:邊長為2的正方形OABC在平面直角坐標(biāo)系中位于x軸上方,OA與x軸的正半軸的夾角為60°,則B點(diǎn)的坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】經(jīng)過實(shí)驗(yàn)獲得兩個(gè)變量 x(x 0), y( y 0) 的一組對(duì)應(yīng)值如下表。
x | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
y | 7 | 3.5 | 2.33 | 1.75 | 1.4 | 1.17 | 1 |
(1)在網(wǎng)格中建立平面直角坐標(biāo)系,畫出相應(yīng)的函數(shù)圖象,求出這個(gè)函數(shù)表達(dá)式;
(2)結(jié)合函數(shù)圖象解決問題:(結(jié)果保留一位小數(shù))
①的值約為多少?
②點(diǎn)A坐標(biāo)為(6,0),點(diǎn)B在函數(shù)圖象上,OA=OB,則點(diǎn)B的橫坐標(biāo)約是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中, ∠C=90°,邊AB的垂直平分線交AB、AC分別于點(diǎn)D,點(diǎn)E,連結(jié)BE.
(1)若∠A=40°,求∠CBE的度數(shù).
(2)若AB=10,BC=6,求△BCE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,BD是矩形ABCD的對(duì)角線,∠ABD=30°,AD=1.將△BCD沿射線BD方向平移到△B′C′D′的位置,使B′為BD中點(diǎn),連接AB′,C′D,AD′,BC′,如圖2.
(1)求證:四邊形AB′C′D是菱形;
(2)求四邊形ABC′D′的周長.
圖1 圖2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠MON=30°,點(diǎn)A1、A2、A3…在射線ON上,點(diǎn)B1、B2、B3…在射線OM上,△A1B1A2、△A2B2A3、△A3B3A4…均為等邊三角形,從左起第1個(gè)等邊三角形的邊長記為a1,第2個(gè)等邊三角形的邊長記為a2,以此類推.若OA1=1,則a2017= ______ .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D為AB邊上一點(diǎn).
求證:(1)△ACE≌△BCD;(2).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AD是⊙O的弦,AB經(jīng)過圓心O,交⊙O于點(diǎn)C.∠DAB=∠B=30°.
(1)直線BD是否與⊙O相切?為什么?
(2)連接CD,若CD=5,求AB的長.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com