如圖,拋物線y=ax2+bx+3與x軸相交于點(diǎn)A(-1,0)、B(3,0),與y軸相交于點(diǎn)C,點(diǎn)P為線段OB上的動(dòng)點(diǎn)(不與O、B重合),過點(diǎn)P垂直于x軸的直線與拋物線及線段BC分別交于點(diǎn)E、F,點(diǎn)D在y軸正半軸上,OD=2,連接DE、OF.
(1)求拋物線的解析式;
(2)當(dāng)四邊形ODEF是平行四邊形時(shí),求點(diǎn)P的坐標(biāo);
(3)過點(diǎn)A的直線將(2)中的平行四邊形ODEF分成面積相等的兩部分,求這條直線的解析式.(不必說明平分平行四邊形面積的理由)
(1)∵點(diǎn)A(-1,0)、B(3,0)在拋物線y=ax2+bx+3上,
a-b+3=0
9a+3b+3=0
,
解得a=-1,b=2,
∴拋物線的解析式為:y=-x2+2x+3.

(2)在拋物線解析式y(tǒng)=-x2+2x+3中,令x=0,得y=3,∴C(0,3).
設(shè)直線BC的解析式為y=kx+b,將B(3,0),C(0,3)坐標(biāo)代入得:
3k+b=0
b=3
,
解得k=-1,b=3,
∴y=-x+3.
設(shè)E點(diǎn)坐標(biāo)為(x,-x2+2x+3),則P(x,0),F(xiàn)(x,-x+3),
∴EF=yE-yF=-x2+2x+3-(-x+3)=-x2+3x.
∵四邊形ODEF是平行四邊形,
∴EF=OD=2,
∴-x2+3x=2,即x2-3x+2=0,
解得x=1或x=2,
∴P點(diǎn)坐標(biāo)為(1,0)或(2,0).

(3)平行四邊形是中心對(duì)稱圖形,其對(duì)稱中心為兩條對(duì)角線的交點(diǎn)(或?qū)蔷的中點(diǎn)),過對(duì)稱中心的直線平分平行四邊形的面積,因此過點(diǎn)A與?ODEF對(duì)稱中心的直線平分?ODEF的面積.

①當(dāng)P(1,0)時(shí),
點(diǎn)F坐標(biāo)為(1,2),又D(0,2),
設(shè)對(duì)角線DF的中點(diǎn)為G,則G(
1
2
,2).
設(shè)直線AG的解析式為y=kx+b,將A(-1,0),G(
1
2
,2)坐標(biāo)代入得:
-k+b=0
1
2
k+b=2
,
解得k=b=
4
3
,
∴所求直線的解析式為:y=
4
3
x+
4
3
;
②當(dāng)P(2,0)時(shí),
點(diǎn)F坐標(biāo)為(2,1),又D(0,2),
設(shè)對(duì)角線DF的中點(diǎn)為G,則G(1,
3
2
).
設(shè)直線AG的解析式為y=kx+b,將A(-1,0),G(1,
3
2
)坐標(biāo)代入得:
-k+b=0
k+b=
3
2

解得k=b=
3
4
,
∴所求直線的解析式為:y=
3
4
x+
3
4

綜上所述,所求直線的解析式為:y=
4
3
x+
4
3
或y=
3
4
x+
3
4
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

我們把一個(gè)半圓與拋物線的一部分合成的封閉圖形稱為“蛋圓”,如果一條直線與“蛋圓”只有一個(gè)交點(diǎn),那么這條直線叫做“蛋圓”的切線.如圖,點(diǎn)A,B,C,D分別是“蛋圓”與坐標(biāo)軸的交點(diǎn),已知點(diǎn)D的坐標(biāo)為(0,-3),AB為半圓的直徑,半圓圓心M的坐標(biāo)為(1,0),半圓半徑為2,則經(jīng)過點(diǎn)C的“蛋圓”切線EC的解析式是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在同一坐標(biāo)系內(nèi),二次函數(shù)的圖象與兩坐標(biāo)軸分別交于點(diǎn)A(-1,0),點(diǎn)B(2,0)和點(diǎn)C(0,4),一次函數(shù)的圖象與拋物線交于B,C兩點(diǎn).
(1)二次函數(shù)的解析式為______;
(2)當(dāng)自變量x______時(shí),兩函數(shù)的函數(shù)值都隨x增大而減小;
(3)當(dāng)自變量x______時(shí),一次函數(shù)值大于二次函數(shù)值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,將直線y=kx沿y軸向下平移3個(gè)單位長(zhǎng)度后恰好經(jīng)過B(-3,0)及y軸上的C點(diǎn).若拋物線y=-x2+bx+c與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的右側(cè)),且經(jīng)過點(diǎn)C,其對(duì)稱軸與直線BC交于點(diǎn)E,與x軸交于點(diǎn)F.
(1)求直線BC及拋物線的解析式;
(2)設(shè)拋物線的頂點(diǎn)為D,點(diǎn)P在拋物線的對(duì)稱軸上,若∠APD=∠ACB,求點(diǎn)P的坐標(biāo);
(3)在拋物線上是否存在點(diǎn)M,使得直線CM把四邊形EFOC分成面積相等的兩部分?若存在,請(qǐng)求出直線CM的解析式;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于A、B兩點(diǎn),其中A點(diǎn)坐標(biāo)為(-1,0).點(diǎn)C(0,5),D(1,8)在拋物線上,M為拋物線的頂點(diǎn).
(1)拋物線的解析式為______;
(2)△MCB的面積為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知二次函數(shù)的圖象如圖所示.
(1)求二次函數(shù)的解析式及拋物線頂點(diǎn)M的坐標(biāo);
(2)若點(diǎn)N為線段BM上的一點(diǎn),過點(diǎn)N作x軸的垂線,垂足為點(diǎn)Q.當(dāng)點(diǎn)N在線段BM上運(yùn)動(dòng)時(shí)(點(diǎn)N不與點(diǎn)B,點(diǎn)M重合),設(shè)NQ的長(zhǎng)為t,四邊形NQAC的面積為s,求s與t之間的函數(shù)關(guān)系式及自變量t的取值范圍;
(3)在對(duì)稱軸右側(cè)的拋物線上是否存在點(diǎn)P,使△PAC為直角三角形?若存在,求出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由;
(4)將△OAC補(bǔ)成矩形,使上△OAC的兩個(gè)頂點(diǎn)成為矩形一邊的兩個(gè)頂點(diǎn),第三個(gè)頂點(diǎn)落在矩形這一邊的對(duì)邊上,試直接寫出矩形的未知的頂點(diǎn)坐標(biāo)(不需要計(jì)算過程).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標(biāo)系xOy中,已知拋物線y=ax2+bx-2經(jīng)過(2,1)和(6,-5)兩點(diǎn).
(1)求拋物線的解析式;
(2)設(shè)此拋物線與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于C點(diǎn),點(diǎn)P是在直線x=4右側(cè)的此拋物線上一點(diǎn),過點(diǎn)P作PM⊥x軸,垂足為M.若以A、P、M為頂點(diǎn)的三角形與△OCB相似,求點(diǎn)P的坐標(biāo);
(3)點(diǎn)E是直線BC上的一點(diǎn),點(diǎn)F是平面內(nèi)的一點(diǎn),若要使以點(diǎn)O、B、E、F為頂點(diǎn)的四邊形是菱形,請(qǐng)直接寫出點(diǎn)F的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在△ABC中,AB=17,AC=5
2
,∠CAB=45°,點(diǎn)O在BA上移動(dòng),以O(shè)為圓心作⊙O,使⊙O與邊BC相切,切點(diǎn)為D,設(shè)⊙O的半徑為x,四邊形AODC的面積為y.
(1)求y與x的函數(shù)關(guān)系式;
(2)求x的取值范圍;
(3)當(dāng)x為何值時(shí),⊙O與BC、AC都相切?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,拋物線l1:y1=a(x+1)2+2與l2:y2=-(x-2)2-1交于點(diǎn)B(1,-2),且分別與y軸交于點(diǎn)D、E.過點(diǎn)B作x軸的平行線,交拋物線于點(diǎn)A、C,則以下結(jié)論:
①無論x取何值,y2總是負(fù)數(shù);
②l2可由l1向右平移3個(gè)單位,再向下平移3個(gè)單位得到;
③當(dāng)-3<x<1時(shí),隨著x的增大,y1-y2的值先增大后減;
④四邊形AECD為正方形.
其中正確的是( 。
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案