【題目】如圖,點的邊的延長線上一點,點是邊上的一點(不與點重合).以為鄰邊作平行四邊形,又(在直線的同側(cè)),如果,那么的面積與面積的比值為____________

【答案】3:4

【解析】

首先過點PPH//BCABH,連接CH,PF,易得四邊形APEB、BFPH是平行四邊形,又由四邊形BDEF是平行四邊形,設BD=a,則AB=4a,可求得BH=PF=3a,又由SHBC=SPBC,SHBCSABC=BH:AB,即可求得PBC的面積與△ABC面積之比.

過點PPH//BCABH,連接CHPF,

APBE,AP=BE

∴四邊形APEB是平行四邊形,

PEAB,PE=AB,

∵四邊形BDEF是平行四邊形,

EFBD,EF=BD,

EFAB

P、E、F共線,

BD=a,

,

PE=AB=4a,

PF=PE-EF=3a,

PHBC,

SHBC=SPBC

PFAB,

∴易得四邊形BFPH是平行四邊形,

BH=PF=3a

SHBCSABC=BH:AB=3a4a=3:4,

的面積與面積的比值為3:4

故答案為:3:4.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】3分)如圖,小華站在河岸上的G點,看見河里有一小船沿垂直于岸邊的方向劃過來.此時,測得小船C的俯角是∠FDC=30°,若小華的眼睛與地面的距離是1.6米,BG=0.7米,BG平行于AC所在的直線,迎水坡i=43,坡長AB=8米,點A、BC、D、FG在同一平面內(nèi),則此時小船C到岸邊的距離CA的長為 米.(結(jié)果保留根號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某學校要從數(shù)學競賽初賽成績相同的四名學生(其中2名男生,2名女生)中,隨機選出2名學生去參加決賽,則選出的2名學生恰好為1名男生和1名女生的概率為( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,矩形中,,點邊上的一動點(點點不重合),四邊形沿折疊得邊形,延長于點

圖① 圖②

1)求證:;

2)如圖②,若點恰好在的延長線上時,試求出的長度;

3)當時,求證:是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,Rt△ABC 的三個頂點分別是 A(﹣4,2),B(﹣1,4),C(﹣1,2).

(1)將△ABC 以點 C 為旋轉(zhuǎn)中心旋轉(zhuǎn) 180°,畫出旋轉(zhuǎn)后對應的△,的坐標為 ;

(2)平移△ABC,點 B 的對應點 的坐標為(4,﹣1),畫出平移后對應的△,的坐標為 ;

(3)若將△繞某一點旋轉(zhuǎn)可以得到△,請直接寫出旋轉(zhuǎn)中心的坐標 為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖(1),在矩形中,把分別翻折,使點分別落在對角線上的點、處,折痕分別為、

    

1)求證:

2)請連接、,證明四邊形是平行四邊形

3、是矩形的邊、上的兩點,連結(jié)、,如圖(2)所示,若.且,,求的長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)的圖象經(jīng)過點,且與正比例函數(shù)的圖象交于點,點的橫坐標是

1)求一次函數(shù)的函數(shù)解析式;

2)根據(jù)圖象,寫出當時,自變量的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知函數(shù)的圖像在第一象限交于點Am,y1),點Bm+1,y2)在的圖像上,且點B在以O 點為圓心,OA為半徑的⊙O上,則k的值為( ).

A. B. 1 C. D. 2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平面直角坐標系內(nèi),小正方形網(wǎng)格的邊長為1個單位長度,△ABC 的三個頂點的坐標分別 A(-3,4)B(-5,2)C(-2,1)

(1)畫出 △ABC關(guān)于y 軸的對稱圖形 △A1B1C1;

(2)畫出將△ABC 繞原點 O逆時針方向旋轉(zhuǎn)90°得到的△A2B2C2 ;

(3)求(2)中線段 OA掃過的圖形面積.

查看答案和解析>>

同步練習冊答案