【題目】如圖,在ABCD中,過點B作BE⊥CD,垂足為E,連接AE.F為AE上一點,且∠BFE=∠C.
(1)試說明:△ABF∽△EAD;
(2)若AB=8,BE=6,AD=9,求BF的長.
【答案】(1)見解析;(2)BF=
【解析】
(1)由平行四邊形的性質(zhì)可證明∠BAF=∠AED,由等角的補角相等得到∠AFB=∠D,證得△ABF∽△EAD;
(2)在直角三角形ABE中用勾股定理求出AE的長,再根據(jù)相似三角形對應(yīng)邊成比例即可求解.
(1)∵四邊形ABCD是平行四邊形,
∴∠D+∠C=180°,AB∥CD,
∴∠BAF=∠AED.
∵∠AFB+∠BFE=180°,∠D+∠C=180°,∠BFE=∠C,
∴∠AFB=∠D,
∴△ABF∽△EAD;
(2)∵BE⊥CD,AB∥CD,
∴BE⊥AB,
∴∠ABE=90°,AB=8,BE=6,
∴AE=10.
∵由(1)知,△ABF∽△EAD,
∴,
∴BF.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某數(shù)學(xué)社團(tuán)成員想利用所學(xué)的知識測量某廣告牌的寬度圖中線段MN的長,直線MN垂直于地面,垂足為點在地面A處測得點M的仰角為、點N的仰角為,在B處測得點M的仰角為,米,且A、B、P三點在一直線上請根據(jù)以上數(shù)據(jù)求廣告牌的寬MN的長.
參考數(shù)據(jù):,,,,,
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a,b,c為常數(shù),且a≠0)中的x與y的部分對應(yīng)值如表
x | ﹣1 | 0 | 1 | 3 |
y | ﹣1 | 3 | 5 | 3 |
下列結(jié)論:
①ac<0;
②當(dāng)x>1時,y的值隨x值的增大而減小.
③3是方程ax2+(b﹣1)x+c=0的一個根;
④當(dāng)﹣1<x<3時,ax2+(b﹣1)x+c>0.
其中正確的結(jié)論是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在矩形ABCD中,動點E從A出發(fā),沿AB→BC方向運動,當(dāng)點E到達(dá)點C時停止運動,過點E做FE⊥AE,交CD于F點,設(shè)點E運動路程為x,FC=y,如圖2所表示的是y與x的函數(shù)關(guān)系的大致圖象,當(dāng)點E在BC上運動時,FC的最大長度是,則矩形ABCD的面積是( )
A. B. 5C. 6D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直角坐標(biāo)系中,直線與反比例函數(shù)的圖象交于A,B兩點,已知A點的縱坐標(biāo)是2.
(1)求反比例函數(shù)的解析式.
(2)將直線沿x軸向右平移6個單位后,與反比例函數(shù)在第二象限內(nèi)交于點C.動點P在y軸正半軸上運動,當(dāng)線段PA與線段PC之差達(dá)到最大時,求點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=-x2+bx+c與x軸交于A(1,0),B(-3,0)兩點,與y軸交于點C.
(1)求該拋物線的解析式;
(2)設(shè)該拋物線的頂點為D,求出△BCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)圖象的頂點在原點,對稱軸為軸.一次函數(shù)的圖象與二次函數(shù)的圖象交于兩點(在的左側(cè)),且點坐標(biāo)為.平行于軸的直線過點.
(1)求一次函數(shù)與二次函數(shù)的解析式;
(2)判斷以線段AB為直徑的圓與直線的位置關(guān)系,并給出證明;
(3)把二次函數(shù)的圖象向右平移 2 個單位,再向下平移 t 個單位(t>0),二次函數(shù)的圖象與x 軸交于 M,N 兩點,一次函數(shù)圖象交y 軸于 F 點.當(dāng) t 為何值時,過 F,M,N 三點的圓的面積最?最小面積是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明從家步行到校車站臺,等候坐校車去學(xué)校,圖中的折線表示這一過程中小明的路程S(km)與所花時間t(min)間的函數(shù)關(guān)系;下列說法:①他步行了1km到校車站臺;②他步行的速度是100m/min;③他在校車站臺等了6min;④校車運行的速度是200m/min;其中正確的個數(shù)是( )個.
A. 1B. 2C. 3D. 4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com