(2008•南寧)隨著綠城南寧近幾年城市建設的快速發(fā)展,對花木的需求量逐年提高.某園林專業(yè)戶計劃投資種植花卉及樹木,根據市場調查與預測,種植樹木的利潤y1與投資量x成正比例關系,如圖①所示;種植花卉的利潤y2與投資量x成二次函數(shù)關系,如圖②所示(注:利潤與投資量的單位:萬元)
(1)分別求出利潤y1與y2關于投資量x的函數(shù)關系式;
(2)如果這位專業(yè)戶以8萬元資金投入種植花卉和樹木,他至少獲得多少利潤,他能獲取的最大利潤是多少?
【答案】分析:(1)可根據圖象利用待定系數(shù)法求解函數(shù)解析式;
(2)根據總利潤=樹木利潤+花卉利潤,列出函數(shù)關系式,再求函數(shù)的最值.
解答:解:(1)設y1=kx,由圖①所示,函數(shù)y1=kx的圖象過(1,2),
所以2=k•1,k=2,
故利潤y1關于投資量x的函數(shù)關系式是y1=2x,
∵該拋物線的頂點是原點,
∴設y2=ax2,
由圖②所示,函數(shù)y2=ax2的圖象過(2,2),
∴2=a•22,
故利潤y2關于投資量x的函數(shù)關系式是:y=x2;

(2)設這位專業(yè)戶投入種植花卉x萬元(0≤x≤8),則投入種植樹木(8-x)萬元,他獲得的利潤是z萬元,根據題意,
得z=2(8-x)+x2=x2-2x+16=(x-2)2+14,
當x=2時,z的最小值是14,
∵0≤x≤8,
∴-2≤x-2≤6,
∴(x-2)2≤36,
(x-2)2≤18,
(x-2)2+14≤18+14=32,
即z≤32,此時x=8,
答:當x=8時,z的最大值是32.
點評:本題第(1)個問題是已知一次函數(shù)和二次函數(shù)的圖象,求函數(shù)的解析式,觀察兩個函數(shù)的圖象可知,前者是正比例函數(shù),后者是二次函數(shù),頂點是(0,0),利用待定系數(shù)法,先設兩個函數(shù)的解析式,再將P(1,2),Q(2,2)代入相應的解析式求出參數(shù)即可;第(2)個問題是已知自變量的取值范圍求二次函數(shù)的最值,屬于二次函數(shù)的條件最值問題.這類試題一般先將函數(shù)解析式配方,將函數(shù)解析式變成頂點形式,找出頂點坐標和對稱軸方程,結合自變量的取值范圍,畫出函數(shù)圖象(拋物線的一部分),根據拋物線的對稱性、開口方向,確定函數(shù)的最大(或最。┲,不宜直接用最值公式,這種解題方法體現(xiàn)了數(shù)學中的數(shù)形結合的思想,它的優(yōu)點是直觀形象,避免死記公式.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2008•南寧)隨著中國--東盟自由貿易區(qū)進程的加快和中國--東盟博覽會永久落戶南寧,東盟已成為廣西的第一大貿易伙伴,下面的統(tǒng)計圖(部分)反映了2003年至2007年廣西對東盟的進出口貿易總額變化情況,請你根據圖中的信息解答下列問題:
(1)2007年廣西對東盟的進出口貿易總額比2006年增加了10.8億美元,達
29.1
29.1
億美元,請補充完整條形統(tǒng)計圖;
(2)2007年廣西對東盟的出口貿易總額約占進出口貿易總額的60%,那么這一年廣西對東盟的出口貿易總額約為
17.5
17.5
億美元(精確到0.1);
(3)根據上面補充完整后的統(tǒng)計圖判斷廣西對東盟的進出口貿易總額相對上一年增長速度最快的是
2007
2007
年,2007年進出口貿易總額相對于2006年的年增長率約為59%,按照這樣的增長率,請你預測2008年廣西對東盟的進出口貿易總額約為
46.3
46.3
億美元.(精確到0.1)

查看答案和解析>>

科目:初中數(shù)學 來源:2008年全國中考數(shù)學試題匯編《一次函數(shù)》(06)(解析版) 題型:解答題

(2008•南寧)隨著綠城南寧近幾年城市建設的快速發(fā)展,對花木的需求量逐年提高.某園林專業(yè)戶計劃投資種植花卉及樹木,根據市場調查與預測,種植樹木的利潤y1與投資量x成正比例關系,如圖①所示;種植花卉的利潤y2與投資量x成二次函數(shù)關系,如圖②所示(注:利潤與投資量的單位:萬元)
(1)分別求出利潤y1與y2關于投資量x的函數(shù)關系式;
(2)如果這位專業(yè)戶以8萬元資金投入種植花卉和樹木,他至少獲得多少利潤,他能獲取的最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學 來源:2009年山東省濰坊市諸城市孟疃初中中考數(shù)學二模試卷(解析版) 題型:解答題

(2008•南寧)隨著綠城南寧近幾年城市建設的快速發(fā)展,對花木的需求量逐年提高.某園林專業(yè)戶計劃投資種植花卉及樹木,根據市場調查與預測,種植樹木的利潤y1與投資量x成正比例關系,如圖①所示;種植花卉的利潤y2與投資量x成二次函數(shù)關系,如圖②所示(注:利潤與投資量的單位:萬元)
(1)分別求出利潤y1與y2關于投資量x的函數(shù)關系式;
(2)如果這位專業(yè)戶以8萬元資金投入種植花卉和樹木,他至少獲得多少利潤,他能獲取的最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學 來源:2009年山東省東營市中考數(shù)學模擬試卷(解析版) 題型:解答題

(2008•南寧)隨著綠城南寧近幾年城市建設的快速發(fā)展,對花木的需求量逐年提高.某園林專業(yè)戶計劃投資種植花卉及樹木,根據市場調查與預測,種植樹木的利潤y1與投資量x成正比例關系,如圖①所示;種植花卉的利潤y2與投資量x成二次函數(shù)關系,如圖②所示(注:利潤與投資量的單位:萬元)
(1)分別求出利潤y1與y2關于投資量x的函數(shù)關系式;
(2)如果這位專業(yè)戶以8萬元資金投入種植花卉和樹木,他至少獲得多少利潤,他能獲取的最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學 來源:2008年廣西南寧市中考數(shù)學試卷(解析版) 題型:解答題

(2008•南寧)隨著綠城南寧近幾年城市建設的快速發(fā)展,對花木的需求量逐年提高.某園林專業(yè)戶計劃投資種植花卉及樹木,根據市場調查與預測,種植樹木的利潤y1與投資量x成正比例關系,如圖①所示;種植花卉的利潤y2與投資量x成二次函數(shù)關系,如圖②所示(注:利潤與投資量的單位:萬元)
(1)分別求出利潤y1與y2關于投資量x的函數(shù)關系式;
(2)如果這位專業(yè)戶以8萬元資金投入種植花卉和樹木,他至少獲得多少利潤,他能獲取的最大利潤是多少?

查看答案和解析>>

同步練習冊答案