【題目】如圖,四邊形ABCD和四邊形DEFG都是正方形,點(diǎn)E,G分別在AD,CD上,連接AF,BF,CF
(1)求證:AF=CF;
(2)若∠BAF=35°,求∠BFC的度數(shù).

【答案】
(1)解:證明:∵四邊形ABCD和四邊形DEFG都是正方形,

∴AD=CD,ED=GD,F(xiàn)E=FG.

∴AD﹣ED=CD﹣GD.

∴AE=CG.

在△AFE和△CFG中

,

∴△AFE≌△CFG(SAS),

∴AF=CF;


(2)解:解:由(1)得△AEF≌△CGF,

∴∠AFE=∠CFG.

又∵AB∥EF,∠BAF=35°,

∴∠AFE=∠CFG=∠BAF=35°.

連接DF,

∵四邊形DEFG是正方形,

∴∠DFG=45°.

∴∠BFC=180°﹣∠CFG﹣∠GFD=180°﹣35°﹣45°=100°.

即∠BFC=100°.


【解析】(1)利用正方形的性質(zhì)結(jié)合全等三角形的判定與性質(zhì)得出△AFE≌△CFG進(jìn)而得出AF=CF;(2)利用正方形的對(duì)角線平分對(duì)角進(jìn)而得出答案.
【考點(diǎn)精析】關(guān)于本題考查的正方形的性質(zhì),需要了解正方形四個(gè)角都是直角,四條邊都相等;正方形的兩條對(duì)角線相等,并且互相垂直平分,每條對(duì)角線平分一組對(duì)角;正方形的一條對(duì)角線把正方形分成兩個(gè)全等的等腰直角三角形;正方形的對(duì)角線與邊的夾角是45o;正方形的兩條對(duì)角線把這個(gè)正方形分成四個(gè)全等的等腰直角三角形才能得出正確答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某通訊器材商場(chǎng),計(jì)劃用40000元從廠家購(gòu)進(jìn)若干部新型手機(jī),以滿足市場(chǎng)需求. 已知該廠家生產(chǎn)三種不同型號(hào)的手機(jī),出廠價(jià)分別為:甲種型號(hào)手機(jī)每部1200元,乙種型號(hào)手機(jī)每部400元,丙種型號(hào)手機(jī)每部800.

1)若該商場(chǎng)同時(shí)購(gòu)進(jìn)其中兩種不同型號(hào)的手機(jī)共40部,并將40000元恰好用完. 請(qǐng)你幫助該商場(chǎng)研究一下進(jìn)貨方案;

2)商場(chǎng)每銷售一部甲種型號(hào)手機(jī)可獲利120元,每銷售一部乙種型號(hào)手機(jī)可獲利80元,每銷售一部丙種型號(hào)手機(jī)可獲利120元,那么在同時(shí)購(gòu)進(jìn)兩種不同型號(hào)手機(jī)的幾種方案中,哪種進(jìn)貨方案獲利最多?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC中,∠ABC=90°,AB=2,BC=4,現(xiàn)將△ABC繞頂點(diǎn)B順時(shí)針方向旋轉(zhuǎn)△A′BC′的位置,此時(shí)A′C′與BC的交點(diǎn)D是BC的中點(diǎn),則線段C′D的長(zhǎng)度是(
A.
B.
C.
D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】觀察下列圖形:

它們是按一定規(guī)律排列的,依照此規(guī)律,第5個(gè)圖形中的五角星的個(gè)數(shù)為___,第n個(gè)圖形中的五角星(n為正整數(shù))個(gè)數(shù)為____(用含n的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,BDAC DEFAC FAMD=AGF1=2=35°

1)求∠GFC的度數(shù)

2)求證:DMBC

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】20筐白菜,以每筐25千克為標(biāo)準(zhǔn),超過或不足的千克數(shù)分別用正、負(fù)數(shù)來(lái)表示,記錄如下:

與標(biāo)準(zhǔn)質(zhì)量的差值(單位:千克)

數(shù)

1

4

2

3

2

8

(1)20筐白菜中,最重的一筐比最輕的一筐重______千克;

(2)與標(biāo)準(zhǔn)重量比較,20筐白菜總計(jì)超過或不足多少千克?

3)若白菜每千克售價(jià)元,則出售這20筐白菜可賣多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC中,∠C=90°,∠A=30°

1)用尺規(guī)作圖作AB邊上的中垂線DE,交AC于點(diǎn)D,交AB于點(diǎn)E.(保留作圖痕跡,不要求寫作法和證明);

2)連接BD,求證:BD平分∠CBA

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn)A(2,0),B(0,4),作BOC,使BOCABO全等,則點(diǎn)C坐標(biāo)為________________________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知如圖,射線CBOA,C=OAB=100°,E、FCB上,且滿足∠FOB=AOB,OE平分∠COF。

(1)求∠EOB的度數(shù);

(2)若平行移動(dòng)AB,那么∠OBC∶∠OFC的值是否隨之變化?若變化,找出變化規(guī)律;若不變,求出這個(gè)比值;

(3)在平行移動(dòng)AB的過程中,是否存在某種情況,使∠OEC=OBA?若存在,求出其度數(shù);若不存在,說明理由。

查看答案和解析>>

同步練習(xí)冊(cè)答案