【題目】星光廚具店購進(jìn)電飯煲和電壓鍋兩種電器進(jìn)行銷售其進(jìn)價(jià)與售價(jià)如表

進(jìn)價(jià)(元/臺(tái))

售價(jià)(元/臺(tái))

電飯煲

200

250

電壓鍋

160

200

1)一季度,廚具店購進(jìn)這兩種電器共30臺(tái),用去了5600元,并且全部售完,問廚具店在該買賣中賺了多少錢?

2)為了滿足市場需求,二季度廚具店決定采購電飯煲和電壓鍋共50臺(tái),且電飯煲的數(shù)量不大于電壓鍋的,請(qǐng)你通過計(jì)算判斷,如何進(jìn)貨廚具店賺錢最多?最大利潤是多少?

【答案】11400元;(2)采購18臺(tái)電飯煲,32臺(tái)電壓鍋時(shí),最大利潤是2180元.

【解析】

通過審題,表格顯示了兩種商品的進(jìn)價(jià)和售價(jià);

1)題目給出兩種電器的總數(shù)量和進(jìn)貨的總花費(fèi);設(shè)其中一個(gè)電器購進(jìn)x臺(tái),則另一種電器購進(jìn)(30-x)臺(tái),由購進(jìn)總費(fèi)用可以求各種電器的數(shù)量,然后再分別乘以每種電器的利潤,最后把各種電器的利潤相加起來;

2)題目給出了兩種電器的數(shù)量之間的關(guān)系,同時(shí)記得結(jié)合表格中的數(shù)據(jù);可以設(shè)其中的一種電器數(shù)量為 n 臺(tái),總利潤為z元,從而列出方程,根據(jù)兩種電器之間的數(shù)量關(guān)系,確定取值范圍,從而求出利潤的最大值.

解:(1)每件電飯鍋的利潤:250-200=50(元);每件電壓鍋的利潤:200-160=40(元)

設(shè)購進(jìn)的電飯煲x臺(tái),則購進(jìn)的電壓鍋(30-x)臺(tái).

由題意得:200x+16030-x=5600

解得:x=20

則電壓鍋:30-20=10(臺(tái))

總利潤=50×20+40×10=1400 (元)

答:廚具店在該買賣中賺了1400元.

2)設(shè)采購的電飯煲有n 臺(tái),則采購的電壓鍋有(50-n)臺(tái)

由題意得:總利潤z=50n+40 50-n=2000+10n

n50-n),

n

當(dāng)n=18時(shí),總利潤z最大,則最大的利潤為2000+10×18=2180(元)

答:采購18臺(tái)電飯煲,32臺(tái)電壓鍋時(shí),廚具店賺錢最多,最大利潤是2180元.

故答案為:(11400元;(2)采購18臺(tái)電飯煲,32臺(tái)電壓鍋時(shí),最大利潤是2180元.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A、B分別在x軸、y軸上(OAOB),以AB為直徑的圓經(jīng)過原點(diǎn)O,C的中點(diǎn),連結(jié)ACBC.下列結(jié)論:①AC=BC;②若OA=4,OB=2,則ABC的面積等于5;③若OAOB=4,則點(diǎn)C的坐標(biāo)是(2,2.其中正確的結(jié)論有( )

A. 3個(gè) B. 2個(gè) C. 1個(gè) D. 0個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)x軸交于點(diǎn)A,與y軸交于點(diǎn)B.將△AOB沿過點(diǎn)B的直線折疊,使點(diǎn)O落在AB邊上的點(diǎn)D處,折痕交x軸于點(diǎn)E

1)求直線BE的解析式;

2)求點(diǎn)D的坐標(biāo);

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校八年級(jí)全體同學(xué)參加了某項(xiàng)捐款活動(dòng),隨機(jī)抽查了部分同學(xué)捐款的情況統(tǒng)計(jì)如圖所示.

1)本次共抽查學(xué)生多少人?并將條形統(tǒng)計(jì)圖補(bǔ)充完整;

2)請(qǐng)直接寫出捐款金額的眾數(shù)和中位數(shù),并計(jì)算捐款的平均數(shù);

3)在八年級(jí)600名學(xué)生中,捐款20元及以上(含20元)的學(xué)生估計(jì)有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,D、E分別是AB、AC的中點(diǎn),BE=2DE,延長DE到點(diǎn)F,使得EF=BE,連接CF.

(1)求證:四邊形BCFE是菱形;

(2)若CE=4,BCF=120°,求菱形BCFE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知矩形ABCD的一條邊AD=8,將矩形ABCD折疊,使得頂點(diǎn)B落在CD邊上的點(diǎn)P處,折痕與BC交于點(diǎn)O.

(1)求證:△OCP∽△PDA

(2)若PO:PA=1:2,則邊AB的長是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在銳角ABC中,AB=4,BC=5,ACB=45°,將ABC繞點(diǎn)B按逆時(shí)針方向旋轉(zhuǎn),得到△DBE

(1)當(dāng)旋轉(zhuǎn)成如圖,點(diǎn)E在線段CA的延長線上時(shí),則CED的度數(shù)是   度;

(2)當(dāng)旋轉(zhuǎn)成如圖,連接AD、CE,若ABD的面積為4,求CBE的面積;

(3)點(diǎn)M為線段AB的中點(diǎn),點(diǎn)P是線段AC上一動(dòng)點(diǎn),在ABC繞點(diǎn)B按逆時(shí)針方向旋轉(zhuǎn)過程中,點(diǎn)P的對(duì)應(yīng)點(diǎn)P′,連接MP′,如圖,直接寫出線段MP′長度的最大值和最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一位運(yùn)動(dòng)員推鉛球,鉛球運(yùn)行時(shí)離地面的高度(米)是關(guān)于運(yùn)行時(shí)間(秒)的二次函數(shù).已知鉛球剛出手時(shí)離地面的高度為米;鉛球出手后,經(jīng)過4秒到達(dá)離地面3米的高度,經(jīng)過10秒落到地面.如圖建立平面直角坐標(biāo)系.

(Ⅰ)為了求這個(gè)二次函數(shù)的解析式,需要該二次函數(shù)圖象上三個(gè)點(diǎn)的坐標(biāo).根據(jù)題意可知,該二次函數(shù)圖象上三個(gè)點(diǎn)的坐標(biāo)分別是____________________________;

(Ⅱ)求這個(gè)二次函數(shù)的解析式和自變量的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】列方程解應(yīng)用題

1綠水青山就是金山銀山,某省2018年新建濕地公園和森林公園共42個(gè),其中森林公園比濕地公園多4個(gè).問該省2018年新建濕地公園和森林公園各多少個(gè)?

2)某市大市場進(jìn)行高端的家用電器銷售,每件電器的進(jìn)價(jià)是2000元,若按標(biāo)價(jià)的八折銷售該電器一件,則利潤率為20%.求:

①該電器的標(biāo)價(jià)是多少元?

②現(xiàn)如果按同一標(biāo)價(jià)的九折銷售該電器一件,那么獲得的利潤為多少元?

查看答案和解析>>

同步練習(xí)冊(cè)答案