【題目】如圖,點(diǎn)A在x軸的正半軸上,點(diǎn)B在反比例函數(shù)y=(k>0,x>0)的圖象上,延長AB交該函數(shù)圖象于另一點(diǎn)C,BC=3AB,點(diǎn)D也在該函數(shù)的圖象上,BD=BC,以BC,BD為邊構(gòu)造CBDE,若點(diǎn)O,B,E在同一條直線上,且CBDE的周長為k,則AB的長為_____.
【答案】
【解析】
解:∵四邊形CBDE是平行四邊形,BD=BC,
∴四邊形CBDE是菱形,
∵CBDE的周長為k,
∴BC=k,
∵BC=3AB,
∴AB=k,
設(shè)點(diǎn)C的坐標(biāo)為(a,),
∵BC=3AB,
∴點(diǎn)B的坐標(biāo)為(4a,),
∵BD=BC,點(diǎn)O、B、E在同一條直線上,
∴點(diǎn)B在直線y=x上,
∴4a=,得k=16a2,
∴點(diǎn)C(a,16a),點(diǎn)B(4a,4a),
∴BC2=(4a﹣a)2+(4a﹣16a)2=9a2+144a2=153a2,
又∵菱形CBDE的周長為k,
∴BC2===16a4,
∴16a4=153a2,得a2=,
∴k=16a2=16×=153,
∴AB=k =,
故答案為:.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖, △ABC中,AB=AC,∠A=36°,AC的垂直平分線交AB于E,D為垂足,連結(jié)EC
⑴求∠ECD的度數(shù);
⑵若CE=5,求CB的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一位運(yùn)動員在距籃下4m處跳起投籃,球運(yùn)行的路線是拋物線,當(dāng)球運(yùn)行的水平距離是2.5m時(shí),達(dá)到最大高度3.5m,然后準(zhǔn)確落入籃圈.已知籃圈中心到地面的距離為3.05m.
(1)建立如圖所示的平面直角坐標(biāo)系,求拋物線的解析式.
(2)該運(yùn)動員身高1.8m,在這次跳投中,球在頭頂上0.25m處出手,
問:球出手時(shí),他距離地面的高度是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)B,F,C,E在直線l上(F,C之間不能直接測量),點(diǎn)A,D在l異側(cè),測得AB=DE,AC=DF,BF=EC.
(1)求證:△ABC≌△DEF;
(2)指出圖中所有平行的線段,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰三角形ABC中,∠A=90°,D是BC邊的中點(diǎn).
(1)若E在直角邊AB上運(yùn)動,F在直角邊AC上運(yùn)動,在運(yùn)動過程中始終保持BE=AF.則△EDF_____是三角形.
(2)在(1)的條件下,四邊形AEDF的面積是否發(fā)生變化?若不變化,請直接寫出當(dāng)AB=4時(shí),四邊形AEDF的面積;若變化,請說明理由.
(3)若E,F分別為AB,CA延長線上的點(diǎn),且BE=AF,其他條件不變,那么(1)中的結(jié)論是否還成立?畫圖并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列材料:通過小學(xué)的學(xué)習(xí)我們知道,分?jǐn)?shù)可分為“真分?jǐn)?shù)”和“假分?jǐn)?shù)”,而假分?jǐn)?shù)都可化為帶分?jǐn)?shù),如:我們定義:在分式中,對于只含有一個(gè)字母的分式,當(dāng)分子的次數(shù)大于或等于分母的次數(shù)時(shí),我們稱之為“假分式”;當(dāng)分子的次數(shù)小于分母的次數(shù)時(shí),我們稱之為“真分式”.
如這樣的分式就是假分式;再如:,這樣的分式就是真分式類似的,假分式也可以化為帶分式(即:整式與真分式的和的形式)
如:;
解決下列問題:
(1)分式是______分式(填“真分式”或“假分式”);
(2)將假分式化為帶分式;
(3)如果x為整數(shù),分式的值為整數(shù),求所有符合條件的x的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,△ABC的頂點(diǎn)A在第一象限,點(diǎn)B,C的坐標(biāo)分別為(2,1),(6,1),∠BAC=90°,AB=AC,直線AB交y軸于點(diǎn)P,若△ABC與△A′B′C′關(guān)于點(diǎn)P成中心對稱,則點(diǎn)A′的坐標(biāo)為( 。
A. (﹣4,﹣5) B. (﹣5,﹣4) C. (﹣3,﹣4) D. (﹣4,﹣3)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某網(wǎng)店銷售甲、乙兩種羽毛球,已知甲種羽毛球每筒的售價(jià)比乙種羽毛球多15元,王老師從該網(wǎng)店購買了2筒甲種羽毛球和3筒乙種羽毛球,共花費(fèi)255元.
(1)該網(wǎng)店甲、乙兩種羽毛球每筒的售價(jià)各是多少元?
(2)根據(jù)消費(fèi)者需求,該網(wǎng)店決定用不超過8780元購進(jìn)甲、乙兩種羽毛球共200筒,且甲種羽毛球的數(shù)量大于乙種羽毛球數(shù)量的,已知甲種羽毛球每筒的進(jìn)價(jià)為50元,乙種羽毛球每筒的進(jìn)價(jià)為40元.
①若設(shè)購進(jìn)甲種羽毛球m筒,則該網(wǎng)店有哪幾種進(jìn)貨方案?
②若所購進(jìn)羽毛球均可全部售出,請求出網(wǎng)店所獲利潤W(元)與甲種羽毛球進(jìn)貨量m(筒)之間的函數(shù)關(guān)系式,并說明當(dāng)m為何值時(shí)所獲利潤最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx﹣3經(jīng)過點(diǎn)A(2,﹣3),與x軸負(fù)半軸交于點(diǎn)B,與y軸交于點(diǎn)C,且OC=3OB.
(1)求拋物線的解析式;
(2)點(diǎn)D在y軸上,且∠BDO=∠BAC,求點(diǎn)D的坐標(biāo);
(3)點(diǎn)M在拋物線上,點(diǎn)N在拋物線的對稱軸上,是否存在以點(diǎn)A,B,M,N為頂點(diǎn)的四邊形是平行四邊形?若存在,求出所有符合條件的點(diǎn)M的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com