【題目】京東商城銷售A、B兩種型號(hào)的電風(fēng)扇,銷售單價(jià)分別為250元、180元,如表是近兩周的銷售利潤(rùn)情況:(進(jìn)價(jià)、售價(jià)均保持不變,利潤(rùn)=銷售收入﹣進(jìn)貨成本)
(1)求A、B兩種型號(hào)電風(fēng)扇的每臺(tái)進(jìn)價(jià);
(2)若京東商城準(zhǔn)備用不多于5萬(wàn)元的金額采購(gòu)這兩種型號(hào)的電風(fēng)扇共300臺(tái),求A種型號(hào)的電風(fēng)扇最多能采購(gòu)多少臺(tái)?
【答案】(1)A種型號(hào)的風(fēng)扇每臺(tái)進(jìn)價(jià)200元,B種型號(hào)的風(fēng)扇每臺(tái)進(jìn)價(jià)150元;(2)A種型號(hào)的電風(fēng)扇最多能采購(gòu)100臺(tái).
【解析】
(1)設(shè)A種型號(hào)的風(fēng)扇每臺(tái)進(jìn)價(jià)x元,B種型號(hào)的風(fēng)扇每臺(tái)進(jìn)價(jià)y元,利用圖表中數(shù)據(jù)得出等式進(jìn)而得出答案;
(2)結(jié)合京東商城準(zhǔn)備用不多于5萬(wàn)元的金額采購(gòu)這兩種型號(hào)的電風(fēng)扇共300臺(tái)得出不等式求出答案.
(1)設(shè)A種型號(hào)的風(fēng)扇每臺(tái)進(jìn)價(jià)x元,B種型號(hào)的風(fēng)扇每臺(tái)進(jìn)價(jià)y元,由題意得:
解得:.
答:A種型號(hào)的風(fēng)扇每臺(tái)進(jìn)價(jià)200元,B種型號(hào)的風(fēng)扇每臺(tái)進(jìn)價(jià)150元.
(2)設(shè)A種型號(hào)的電風(fēng)扇能采購(gòu)a臺(tái),由題意得:
200a+150(300﹣a)≤50000
解得:a≤100,∴a最大為100臺(tái).
答:A種型號(hào)的電風(fēng)扇最多能采購(gòu)100臺(tái).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,△ABO的頂點(diǎn)坐標(biāo)分別為O(0,0)、A(2a,0)、B(0,﹣a),線段EF兩端點(diǎn)坐標(biāo)為E(﹣m,a+1),F(xiàn)(﹣m,1)(2a>m>a);直線l∥y軸交x軸于P(a,0),且線段EF與CD關(guān)于y軸對(duì)稱,線段CD與NM關(guān)于直線l對(duì)稱.
(1)求點(diǎn)N、M的坐標(biāo)(用含m、a的代數(shù)式表示);
(2)△ABO與△MFE通過(guò)平移能重合嗎?能與不能都要說(shuō)明其理由,若能請(qǐng)你說(shuō)出一個(gè)平移方案(平移的單位數(shù)用m、a表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)y=x2+bx+c的圖象與直線y=x+1相交于點(diǎn)A(﹣1,m)和點(diǎn)B(n,5).
(1)求該二次函數(shù)的關(guān)系式;
(2)在給定的平面直角坐標(biāo)系中,畫出這兩個(gè)函數(shù)的大致圖象;
(3)結(jié)合圖象直接寫出x2+bx+c>x+1時(shí)x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知等邊△ABC的邊長(zhǎng)為a,B,C在x軸上,A在y軸上.
(1)作△ABC關(guān)于x軸的對(duì)稱圖形△A′B′C′;
(2)求△ABC各頂點(diǎn)坐標(biāo)和△A′B′C′各頂點(diǎn)坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知:在△AFD和△CEB中,點(diǎn)A、E、F、C在同一直線上,AE=CF,∠B=∠D,AD∥BC.
(1)AD與BC相等嗎?請(qǐng)說(shuō)明理由;
(2)BE與DF平行嗎?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC的3個(gè)頂點(diǎn)都在5×5的網(wǎng)格(每個(gè)小正方形的邊長(zhǎng)均為1個(gè)單位長(zhǎng)度)的格點(diǎn)上,將△ABC繞點(diǎn)B順時(shí)針旋轉(zhuǎn)到△A′BC′的位置,且點(diǎn)A′、C′仍落在格點(diǎn)上,則線段AB掃過(guò)的圖形面積是平方單位(結(jié)果保留π).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,AC=BC,延長(zhǎng)AB至點(diǎn)D,使DB=AB,連接CD,以CD為邊作等腰直角三角形CDE,其中∠DCE=90°,連接BE.
(1)求證:△ACD≌△BCE;
(2)若AB=2cm,則BE=_______cm.
(3)BE與AD有何位置關(guān)系?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,已知AD,AE分別是△ADC和△ABC的高和中線,AB=6cm,AC=8cm,BC=10cm,∠CAB=90°.試求:
(1)AD的長(zhǎng);
(2)△ABE的面積;
(3)△ACE和△ABE的周長(zhǎng)的差.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,AB=AC,點(diǎn)D是直線BC上一點(diǎn)(不與B、C重合),以AD為一邊在AD的右側(cè)作△ADE,使AD=AE,∠DAE=∠BAC,連接CE.
(1)如圖1,當(dāng)點(diǎn)D在線段BC上,如果∠BAC=90,則∠BCE 度;
(2)設(shè)∠BAC=,∠BCE=.
①如圖2,當(dāng)點(diǎn)D在線段BC上移動(dòng),則,之間有怎樣的數(shù)量關(guān)系?請(qǐng)說(shuō)明理由;
②當(dāng)點(diǎn)D在直線BC上移動(dòng),則,之間有怎樣的數(shù)量關(guān)系?請(qǐng)直接寫出你的結(jié)論,不必說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com