如果四邊形一條對角線所在直線上有一點,它到這條對角線的兩端點的距離不相等,但到另一對角線的兩個端點的距離相等,則稱這個點為這個四邊形的準等距點.
(1)正方形ABCD的對角線AC上有沒有準等距點?請簡單說明理由;
(2)請回答長方形(正方形除外)、菱形、等腰梯形的準等距點的個數(shù)(不必證明);
(3)如圖所示,在四邊形ABCD中,P是AC上的點,PA≠PC,延長BP交CD于點E,延長DP交BC于點F,且∠CDF=∠CBE,CE=CF,證明點P是四邊形ABCD的準等距點.
分析:(1)如圖1,在對角線AC上任取一點P,連接PB,PD,根據(jù)正方形的性質(zhì)就可以得出PD=PB,就可以得出結(jié)論;
(2)由矩形的對角線互相平分但不垂直,就可以得出矩形的準等距點的個數(shù)為0,菱形的對角線互相垂直平分,可以得出菱形的準等距點的個數(shù)是無數(shù)個,等腰梯形不垂直又不互相平分,且任何一條對角線的中垂線都不經(jīng)過另一條對角線的中點,可以得出等腰梯形的準等距點的個數(shù)為2個;
(3)根據(jù)條件可以得出△CDF≌△CBE就可以得出BC=DC,進而可以得出BF=DE,再證明△EDP≌△FBP就可以得出PD=PB就可以得出結(jié)論.
解答:解:(1)如圖1,在對角線AC上任取一點P,連接PB,PD.
∵四邊形ABCD是正方形,
∴BD⊥AC,AC平分BD,
∴PD=PB.
∴點P是對角線AC上的準等距點;

(2)根據(jù)確定準等距點的方法:可以作出其中一條對角線的垂直平分線和另一條對角線所在的直線的交點.主要是根據(jù)兩條對角線的位置關(guān)系決定.
∵矩形的對角線互相平分但不垂直,
∴矩形的準等距點的個數(shù)為0,
∵菱形的對角線互相垂直平分,
∴菱形的準等距點的個數(shù)是無數(shù)個,
∵等腰梯形不垂直又不互相平分,且任何一條對角線的中垂線都不經(jīng)過另一條對角線的中點,
∴等腰梯形的準等距點的個數(shù)為2個;

(3)在△CDF和△CBE中,
∠BCD=∠BCD
∠CDF=∠CBE
CF=CE

∴△CDF≌△CBE(AAS),
∴CD=CB.
∵CE=CF,
∴ED=BF.
在△EDP和△FBP中,
∠CDF=∠CBE
∠DPE=∠BPF
ED=FB
,
∴△EDP≌△FBP(AAS),
∴PD=PB.
∴點P是四邊形ABCD的準等距點.
點評:本考查了菱形的性質(zhì)、全等三角形的判定與性質(zhì)、線段垂直平分線的性質(zhì)等知識.此題屬于閱讀性題目,解題的關(guān)鍵是熟悉垂直平分線的性質(zhì),能夠根據(jù)找準等距點的方和四邊形中兩條對角線的位置關(guān)系判斷準等距點的個數(shù)及證明一個點是四邊形的準等距點.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

25、四邊形一條對角線所在直線上的點,如果到這條對角線的兩端點的距離不相等,但到另一對角線的兩個端點的距離相等,則稱這點為這個四邊形的準等距點.如圖1,點P為四邊形ABCD對角線AC所在直線上的一點,PD=PB,PA≠PC,則點P為四邊形ABCD的準等距點.
(1)如圖2,畫出菱形ABCD的一個準等距點.
(2)如圖3,作出四邊形ABCD的一個準等距點.(尺規(guī)作圖,保留作圖痕跡,不要求寫作法)
(3)如圖4,在四邊形ABCD中,P是AC上的點,PA≠PC,延長BP交CD于點E,延長DP交BC于點F,且∠CDF=∠CBE,CE=CF.試說明點P是四邊形ABCD的準等距點.
(4)試研究四邊形的準等距點個數(shù)的情況.(說出相應四邊形的特征及此時準等距點的個數(shù),不必證明)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•保定一模)四邊形一條對角線所在直線上的點,如果到這條對角線的兩端點的距離不相等,但到另一對角線的兩個端點的距離相等,則稱這點為這個四邊形的準等距點.如圖,點P為四邊形ABCD對角線AC所在直線上的一點,PD=PB,PA≠PC,則點P為四邊形ABCD的準等距點.
(1)如圖2,畫出菱形ABCD的一個準等距點.
(2)如圖3,作出四邊形ABCD的一個準等距點(尺規(guī)作圖,保留作圖痕跡,不要求寫作法).
(3)如圖4,在四邊形ABCD中,P是AC上的點,PA≠PC,延長BP交CD于點E,延長DP交BC于點F,且∠CDF=∠CBE,CE=CF.求證:點P是四邊形ABCD的準等距點.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

四邊形一條對角線所在直線上的點,如果到這條對角線的兩端點的距離不相等,但到另一對角線的兩個端點的距離相等,則稱這點為這個四邊形的準等距點.如圖1,點P為四邊形ABCD對角線AC所在直線上的一點,PD=PB,PA≠PC,則點P為四邊形ABCD的準等距點.
(1)如圖2,畫出菱形ABCD的一個準等距點.
(2)如圖3,作出四邊形ABCD的一個準等距點(尺規(guī)作圖,保留作圖痕跡,不要求寫作法).
(3)如圖4,在四邊形ABCD中,P是AC上的點,PA≠PC,延長BP交CD于點E,延長DP交BC于點F,且∠CDF=∠CBE,CE=CF.求證:點P是四邊形ABCD的準等距點.
(4)試研究四邊形的準等距點個數(shù)的情況.(說出相應四邊形的特征及此時準等距點的個數(shù),不必證明)
①當四邊形的對角線互相垂直且任何一條對角線不平分另一條對角線或者對角線互相平分且不垂直時,準等距點的個數(shù)為
0
0
個;
②當四邊形的對角線既不垂直,又不互相平分,且有一條對角線的中垂線經(jīng)過另一對角線的中點時,準等距點的個數(shù)為
1
1
個;
③當四邊形的對角線既不垂直又不互相平分,且任何一條對角線的中垂線都不經(jīng)過另一條對角線的中點時,準等距點的個數(shù)為
2
2
個;
④當四邊形的對角線互相垂直且至少有一條對角線平分另一條對角線時,準等距點有
無數(shù)
無數(shù)
個(注意點P不能畫在對角線的中點上).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

四邊形一條對角線所在直線上的點,如果到這條對角線的兩端點的距離不相等,但到另一對角線的兩個端點的距離相等,則稱這點為這個四邊形的準等距點.如圖1,點P為四邊形ABCD對角線AC所在直線上的一點,PD=PB,PA≠PC,則點P為四邊形ABCD的準等距點.
(1)如圖2,畫出菱形ABCD的一個準等距點.
(2)如圖3,作出四邊形ABCD的一個準等距點(尺規(guī)作圖,保留作圖痕跡不要求寫作法).

查看答案和解析>>

同步練習冊答案