【題目】如圖,已知邊長為2的正三角形ABC頂點A的坐標(biāo)為(0,6),BC的中點D在y軸上,且在點A下方,點E是邊長為2、中心在原點的正六邊形的一個頂點,把這個正六邊形繞中心旋轉(zhuǎn)一周,在此過程中DE的最小值為(
A.3
B.4﹣
C.4
D.6﹣2

【答案】B
【解析】解:如圖,當(dāng)點E旋轉(zhuǎn)至y軸上時DE最;
∵△ABC是等邊三角形,D為BC的中點,
∴AD⊥BC
∵AB=BC=2
∴AD=ABsin∠B= ,
∵正六邊形的邊長等于其半徑,正六邊形的邊長為2,
∴OE=OE′=2
∵點A的坐標(biāo)為(0,6)
∴OA=6
∴DE′=OA﹣AD﹣OE′=4﹣
故選B.
【考點精析】關(guān)于本題考查的等邊三角形的性質(zhì)和正多邊形和圓,需要了解等邊三角形的三個角都相等并且每個角都是60°;圓的內(nèi)接四邊形的對角互補,并且任何一個外角都等于它的內(nèi)對角;圓的外切四邊形的兩組對邊的和相等才能得出正確答案.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知2014年3月份在某醫(yī)院出生的20名新生嬰兒的體重如下(單位:kg)
4.7 2.9 3.2 3.5 3.8 3.4 2.8 3.3 4.0 4.5
3.6 4.8 4.3 3.6 3.4 3.5 3.6 3.5 3.7 3.7

(1)求這組數(shù)據(jù)的極差;
(2)若以0.4kg為組距,對這組數(shù)據(jù)進(jìn)行分組,制作了如下的“某醫(yī)院2014年3月份20名新生嬰兒體重的頻數(shù)分布表”(部分空格未填),請在頻數(shù)分布表的空格中填寫相關(guān)的量
某醫(yī)院2014年3月份20名新生兒體重的頻數(shù)分布表

組別(kg)

劃記

頻數(shù)

3.55﹣3.95

正一

6

合計

20


(3)經(jīng)檢測,這20名嬰兒的血型的扇形統(tǒng)計圖如圖所示(不完整),求:
①這20名嬰兒中是A型血的人數(shù);
②表示O型血的扇形的圓心角度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算:
(1)(﹣1)2015+(﹣ 1+ ﹣2sin45°.
(2)解不等式 ,并寫出不等式的正整數(shù)解.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,△ABC的兩個頂點A,B的坐標(biāo)分別為(﹣2,0),(﹣1,0),BC⊥x軸,將△ABC以y軸為對稱軸作軸對稱變換,得到△A′B′C′(A和A′,B和B′,C和C′分別是對應(yīng)頂點),直線y=x+b經(jīng)過點A,C′,則點C′的坐標(biāo)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB為⊙O的直徑,點C在⊙O上,延長BC至點D,使DC=CB,延長DA與⊙O的另一個交點為E,連接AC,CE.

(1)求證:∠B=∠D;
(2)若AB=4,BC﹣AC=2,求CE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對反比例函數(shù) ,下列說法不正確的是(
A.它的圖象在第一、三象限
B.點(﹣1,﹣4)在它的圖象上
C.當(dāng)x<0時,y隨x的增大而減小
D.當(dāng)x>0時,y隨x的增大而增大

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,點E為AD的中點,連接EC,過點E作EF⊥EC,交AB于點F,則tan∠ECF=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】龜兔首次賽跑之后,輸了比賽的兔子沒有氣餒,總結(jié)反思后,和烏龜約定再賽一場.圖中的函數(shù)圖象刻畫了龜兔再次賽跑的故事(x表示烏龜從起點出發(fā)所行的時間,y1表示烏龜所行的路程,y2表示兔子所行的路程).有下列說法:

龜兔再次賽跑的路程為1000;

兔子和烏龜同時從起點出發(fā);

烏龜在途中休息了10分鐘;

兔子在途中750處追上烏龜.

其中正確的說法是   .(把你認(rèn)為正確說法的序號都填上)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是平行四邊形,BE、DF分別是∠ABC、∠ADC的平分線,且與對角線AC分別相交于點E、F.
(1)求證:AE=CF;
(2)連結(jié)ED、FB,判斷四邊形BEDF是否是平行四邊形,說明理由.

查看答案和解析>>

同步練習(xí)冊答案