【題目】如圖,已知,添加以下條件,不能判定的是( )
A.B.C.D.
【答案】C
【解析】
全等三角形的判定方法有SAS,ASA,AAS,SSS,根據(jù)定理逐個判斷即可.
A.AB=DC,∠ABC=∠DCB,BC=BC,符合SAS,即能推出△ABC≌△DCB,故本選項錯誤;
B.∵BE=CE,
∴∠DBC=∠ACB.
∵∠ABC=∠DCB,BC=CB,∠ACB=∠DBC,符合ASA,即能推出△ABC≌△DCB,故本選項錯誤;
C.∠ABC=∠DCB,AC=BD,BC=BC,不符合全等三角形的判定定理,即不能推出△ABC≌△DCB,故本選項正確;
D.∠A=∠D,∠ABC=∠DCB,BC=BC,符合AAS,即能推出△ABC≌△DCB,故本選項錯誤.
故選:C.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,點E為矩形ABCD的邊AD上一點,點P從點B出發(fā)沿BE→ED→DC運動到點C停止,點Q從點B出發(fā)沿BC運動到點C停止,它們運動的速度都是1cm/s.若點P、Q同時開始運動,設(shè)運動時間為t(s),△BPQ的面積為y(cm2),已知y與t之間的函數(shù)圖象如圖2所示.給出下列結(jié)論:①當(dāng)0<t≤10時,△BPQ是等腰三角形;②S△ABE=48cm2;③14<t<22時,y=110﹣5t;④在運動過程中,使得△ABP是等腰三角形的P點一共有3個;⑤當(dāng)△BPQ與△BEA相似時,t=14.5.其中正確結(jié)論的序號是( 。
A. ①④⑤ B. ①②④ C. ①③④ D. ①③⑤
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線分別交軸、軸于點和點,且,滿足.
(1)______,______.
(2)點在直線的右側(cè),且:
①若點在軸上,則點的坐標(biāo)為______;
②若為直角三角形,求點的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小李經(jīng)營一家水果店,某日到水果批發(fā)市場批發(fā)一種水果.經(jīng)了解,一次性批發(fā)這種水果不得少于,超過時,所有這種水果的批發(fā)單價均為元kg.圖中折線表示批發(fā)單價(元)與質(zhì)量的函數(shù)關(guān)系.
(1)求圖中線段所在直線的函數(shù)表達式;
(2)小李需要一次性批發(fā)這種水果,需要花費多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知Rt△AOB的兩條直角邊0A、08分別在y軸和x軸上,并且OA、OB的長分別是方程x2—7x+12=0的兩根(OA<0B),動點P從點A開始在線段AO上以每秒l個單位長度的速度向點O運動;同時,動點Q從點B開始在線段BA上以每秒2個單位長度的速度向點A運動,設(shè)點P、Q運動的時間為t秒.
(1)求A、B兩點的坐標(biāo)。
(2)求當(dāng)t為何值時,△APQ與△AOB相似,并直接寫出此時點Q的坐標(biāo).
(3)當(dāng)t=2時,在坐標(biāo)平面內(nèi),是否存在點M,使以A、P、Q、M為頂點的四邊形是平行四邊形?若存在,請直接寫出M點的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】瑞士的一位中學(xué)教師巴爾末從光譜數(shù)據(jù),…中,成功地發(fā)現(xiàn)了其規(guī)律,從而得到了巴爾末公式,繼而打開了光譜奧妙的大門.請你根據(jù)這個規(guī)律寫出第9個數(shù)_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩車從A地駛向B地,并以各自的速度勻速行駛,甲車比乙車早行駛2h,并且甲車途中休息了0.5h,如圖是甲乙兩車行駛的距離y(km)與時間x(h)的函數(shù)圖象.則下列結(jié)論:
(1)a=40,m=1;
(2)乙的速度是80km/h;
(3)甲比乙遲h到達B地;
(4)乙車行駛小時或小時,兩車恰好相距50km.
正確的個數(shù)是( 。
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】正方形ABCD的邊長為3,點E,F(xiàn)分別在射線DC,DA上運動,且DE=DF.連接BF,作EH⊥BF所在直線于點H,連接CH.
(1)如圖1,若點E是DC的中點,CH與AB之間的數(shù)量關(guān)系是 ;
(2)如圖2,當(dāng)點E在DC邊上且不是DC的中點時,(1)中的結(jié)論是否成立?若成立給出證明;若不成立,說明理由;
(3)如圖3,當(dāng)點E,F(xiàn)分別在射線DC,DA上運動時,連接DH,過點D作直線DH的垂線,交直線BF于點K,連接CK,請直接寫出線段CK長的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,矩形ABCD被對角線AC分為兩個直角三角形,AB=3,BC=6.現(xiàn)將Rt△ADC繞點C順時針旋轉(zhuǎn)90°,點A旋轉(zhuǎn)后的位置為點E,點D旋轉(zhuǎn)后的位置為點F.以C為原點,以BC所在直線為x軸,以過點C垂直于BC的直線為y軸,建立如圖②的平面直角坐標(biāo)系.
(1)求直線AE的解析式;
(2)將Rt△EFC沿x軸的負(fù)半軸平行移動,如圖③.設(shè)OC=x(0<x≤9),Rt△EFC與Rt△ABO的重疊部分面積為s;求當(dāng)x=1與x=8時,s的值;
(3)在(2)的條件下s是否存在最大值?若存在,求出這個最大值及此時x的值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com