(2013•盤錦)如圖,圖1是某倉庫的實(shí)物圖片,圖2是該倉庫屋頂(虛線部分)的正面示意圖,BE、CF關(guān)于AD軸對(duì)稱,且AD、BE、CF都與EF垂直,AD=3米,在B點(diǎn)測得A點(diǎn)的仰角為30°,在E點(diǎn)測得D點(diǎn)的仰角為20°,EF=6米,求BE的長.
(結(jié)果精確到0.1米,參考數(shù)據(jù):sin20°≈0.34,cos20°≈0.94,tan20°≈0.36,
3
≈1.73

分析:延長AD交EF于點(diǎn)M,過B作BN⊥AD于點(diǎn)N,可證四邊形BEMN為矩形,分別在Rt△ABN和Rt△DEM中求出AN、DM的長度,即可求得BE=MN=AD-AN+DM的長度.
解答:解:延長AD交EF于點(diǎn)M,過B作BN⊥AD于點(diǎn)N,
∵BE、CF關(guān)于AD軸對(duì)稱,且AD、BE、CF都與EF垂直,
∴四邊形BEMN為矩形,EM=MF=
1
2
EF=3米,
∴BN=EM=3米,BE=MN,
在Rt△ABN中,
∵∠ABN=30°,BN=3米,
AN
BN
=tan30°,
∴AN=BNtan30°=3×
3
3
=
3
(米),
在Rt△DEM中,
∵∠DEM=20°,EM=3米,
DM
EM
=tan20°,
∴DM=EMtan20°≈3×0.36=1.08(米),
∴BE=MN=(AD-AN)+DM=3-
3
+1.08≈3-1.73+1.08=2.35≈2.4(米).
答:BE的長度約為2.4米.
點(diǎn)評(píng):本題考查了解直角三角形的應(yīng)用,解答本題的關(guān)鍵是根據(jù)仰角和俯角的知識(shí)構(gòu)造直角三角形,運(yùn)用解直角三角形的知識(shí)分別求出AN、DM的長度,難度適中.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•盤錦)如圖,拋物線y=ax2+bx+3與x軸相交于點(diǎn)A(-1,0)、B(3,0),與y軸相交于點(diǎn)C,點(diǎn)P為線段OB上的動(dòng)點(diǎn)(不與O、B重合),過點(diǎn)P垂直于x軸的直線與拋物線及線段BC分別交于點(diǎn)E、F,點(diǎn)D在y軸正半軸上,OD=2,連接DE、OF.
(1)求拋物線的解析式;
(2)當(dāng)四邊形ODEF是平行四邊形時(shí),求點(diǎn)P的坐標(biāo);
(3)過點(diǎn)A的直線將(2)中的平行四邊形ODEF分成面積相等的兩部分,求這條直線的解析式.(不必說明平分平行四邊形面積的理由)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•盤錦)如圖,將一副三角板和一張對(duì)邊平行的紙條按下列方式擺放,兩個(gè)三角板的一直角邊重合,含30°角的直角三角板的斜邊與紙條一邊重合,含45°角的三角板的一個(gè)頂點(diǎn)在紙條的另一邊上,則∠1的度數(shù)是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•盤錦)如圖,△ABC中,AB=6,AC=8,BC=10,D、E分別是AC、AB的中點(diǎn),則以DE為直徑的圓與BC的位置關(guān)系是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•盤錦)如圖,張老師在上課前用硬紙做了一個(gè)無底的圓錐形教具,那么這個(gè)教具的用紙面積是
300π
300π
cm2.(不考慮接縫等因素,計(jì)算結(jié)果用π表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•盤錦)如圖,正方形ABCD的邊長是3,點(diǎn)P是直線BC上一點(diǎn),連接PA,將線段PA繞點(diǎn)P逆時(shí)針旋轉(zhuǎn)90°得到線段PE,在直線BA上取點(diǎn)F,使BF=BP,且點(diǎn)F與點(diǎn)E在BC同側(cè),連接EF,CF.
(1)如圖?,當(dāng)點(diǎn)P在CB延長線上時(shí),求證:四邊形PCFE是平行四邊形;
(2)如圖?,當(dāng)點(diǎn)P在線段BC上時(shí),四邊形PCFE是否還是平行四邊形,說明理由;
(3)在(2)的條件下,四邊形PCFE的面積是否有最大值?若有,請求出面積的最大值及此時(shí)BP長;若沒有,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案