【題目】已知:如圖,△ABC中,∠CAB=90°,AC=AB,點D、E是BC上的兩點,且∠DAE=45°,△ADC與△ADF關(guān)于直線AD對稱.
(1)求證:△AEF≌△AEB;
(2)∠DFE= °.
【答案】(1)證明見解析;(2)90°.
【解析】
試題本題考查了全等三角形的判定和性質(zhì),軸對稱的性質(zhì),熟練掌握全等三角形的判定和性質(zhì)是解題的關(guān)鍵.
(1)根據(jù)折疊的性質(zhì)得到△AFD≌△ADC,根據(jù)全等三角形的性質(zhì)得到AC=AF,CD=FD,∠C=∠DFA,∠CAD=∠FAD,由于AB=AC,于是得到AF=AB,證得∠FAE=∠BAE,即可得到結(jié)論;
(2)由(1)知△AFE≌△ABE,根據(jù)全等三角形的性質(zhì)得到∠AFE=∠C,EF=EC,即可得到結(jié)論.
試題解析:解:(1)∵把△ADC沿著AD折疊,得到△ADF,
∴△AFD≌△ADC;
∴AC=AF,CD=FD,∠C=∠DFA,∠CAD=∠FAD,
∵AB=AC,
∴AF=AB,
∵∠DAE=45°,
∴∠FAE=∠BAE,
在△AFE與△ACE中,
,
∴△AFE≌△ABE;
(2)由(1)知△AFE≌△ABE,
∴∠AFE=∠C,EF=EC,
∴∠DFE=∠DFA+∠EFA=∠B+∠C=90°.
故答案為:90°.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在△ABC中,∠CAB=70°,將△ABC繞點A按逆時針方向旋轉(zhuǎn)到△AB′C′的位置,使得CC′∥AB,則∠BAB′的度數(shù)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,點O是邊長為2的正方形ABCD的中心.
(1)若函數(shù)y=x2+m的圖象過點C,求這個函數(shù)的解析式;并判斷其函數(shù)圖象是否過A點.
(2)若將(1)中的函數(shù)圖象先向右平移1個單位,再向上平移2個單位,直接寫出平移后函數(shù)的解析式和頂點坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在長方形ABCD中,AB=4,AD=6.延長BC到點E,使CE=2,連接DE,動點P從點B出發(fā),以每秒2個單位的速度沿BC﹣CD﹣DA向終點A運動,設(shè)點P的運動時間為t秒,當(dāng)t的值為_____秒時,△ABP和△DCE全等.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,
(1)描出A(﹣4,3)、B(﹣1,0)、C(﹣2,3)三點.
(2)△ABC 的面積是多少?
(3)作出△ABC 關(guān)于 y 軸的對稱圖形.
(4)請在x 軸上求作一點P,使△PA1C1 的周長最小,并直接寫出點P 的坐標(biāo)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在同一直角坐標(biāo)系中,函數(shù)y=mx+m和y=﹣mx2+2x+2(m是常數(shù),且m≠0)的圖象可能是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=30°,以直角頂點A為圓心,AB長為半徑畫弧交BC于點D,過D作DE⊥AC于點E.若DE=a,則△ABC的周長用含a的代數(shù)式表示為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,斜面AC的坡度(CD與AD的比)為1:2,AC=3 米,坡頂有旗桿BC , 旗桿頂端B點與A點有一條彩帶相連 . 若AB=10米,則旗桿BC的高度為( 。
A.5米
B.6米
C.8米
D.(3+ )米
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com