如圖,一條拋物線與x軸相交于A、B兩點,其頂點P在折線C-D-E上移動,若點C、D、E的坐標(biāo)分別為(-1,4)、(3,4)、(3,1),點B的橫坐標(biāo)的最小值為1,則點A的橫坐標(biāo)的最大值為( )

A.1
B.2
C.3
D.4
【答案】分析:拋物線在平移過程中形狀沒有發(fā)生變化,因此函數(shù)解析式的二次項系數(shù)在平移前后不會改變.首先,當(dāng)點B橫坐標(biāo)取最小值時,函數(shù)的頂點在C點,根據(jù)待定系數(shù)法可確定拋物線的解析式;而點A橫坐標(biāo)取最大值時,拋物線的頂點應(yīng)移動到E點,結(jié)合前面求出的二次項系數(shù)以及E點坐標(biāo)可確定此時拋物線的解析式,進(jìn)一步能求出此時點A的坐標(biāo),即點A的橫坐標(biāo)最大值.
解答:解:由圖知:當(dāng)點B的橫坐標(biāo)為1時,拋物線頂點。-1,4),設(shè)該拋物線的解析式為:y=a(x+1)2+4,代入點B坐標(biāo),得:
0=a(1+1)2+4,a=-1,
即:B點橫坐標(biāo)取最小值時,拋物線的解析式為:y=-(x+1)2+4.
當(dāng)A點橫坐標(biāo)取最大值時,拋物線頂點應(yīng)。3,1),則此時拋物線的解析式:y=-(x-3)2+1=-x2+6x-8=-(x-2)(x-4),即與x軸的交點為(2,0)或(4,0),
∴點A的橫坐標(biāo)的最大值為2.
故選B.
點評:考查了二次函數(shù)綜合題,解答該題的關(guān)鍵在于讀透題意,要注意的是拋物線在平移過程中形狀并沒有發(fā)生變化,改變的是頂點坐標(biāo).注意拋物線頂點所處的C、E兩個關(guān)鍵位置,前者能確定函數(shù)解析式、后者能得到要求的結(jié)果.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•大連)如圖,一條拋物線與x軸相交于A、B兩點,其頂點P在折線C-D-E上移動,若點C、D、E的坐標(biāo)分別為(-1,4)、(3,4)、(3,1),點B的橫坐標(biāo)的最小值為1,則點A的橫坐標(biāo)的最大值為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•大連一模)如圖,一條拋物線與x軸相交于A、B兩點(點A在點B的左側(cè)),其頂點P在線段MN上移動.若點M、N的坐標(biāo)分別為(-1,-2)、(1,-2),點B的橫坐標(biāo)的最大值為3,則點A的橫坐標(biāo)的最小值為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年1月中考數(shù)學(xué)模擬試卷(5)(解析版) 題型:選擇題

如圖,一條拋物線與x軸相交于A、B兩點,其頂點P在折線C-D-E上移動,若點C、D、E的坐標(biāo)分別為(-1,4)、(3,4)、(3,1),點B的橫坐標(biāo)的最小值為1,則點A的橫坐標(biāo)的最大值為( )

A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年遼寧省大連市中考數(shù)學(xué)試卷(解析版) 題型:選擇題

如圖,一條拋物線與x軸相交于A、B兩點,其頂點P在折線C-D-E上移動,若點C、D、E的坐標(biāo)分別為(-1,4)、(3,4)、(3,1),點B的橫坐標(biāo)的最小值為1,則點A的橫坐標(biāo)的最大值為( )

A.1
B.2
C.3
D.4

查看答案和解析>>

同步練習(xí)冊答案