如圖,在直角坐標(biāo)系內(nèi)有兩個(gè)點(diǎn)A(-1,-1),B(2,3),若M為x軸上一點(diǎn),且使MB-MA最大,求M點(diǎn)的坐標(biāo),并說明理由.
作點(diǎn)A關(guān)于x軸的對稱點(diǎn)A',
作直線BA'交x軸于點(diǎn)M,
由對稱性知MA'=MA,MB-MA=MB-MA'=A'B,
若N是x軸上異于M的點(diǎn),
則NA'=NA,這時(shí)NB-NA=NB-NA'<A'B=MB-MA,
所以,點(diǎn)M就是使MB-MA的最大的點(diǎn),MB-MA的最大值為A'B,
設(shè)直線A'B的解析式為y=kx+b,
1=-k+b
3=2k+b
解得k=
2
3
,b=
5
3
,即直線A'B的解析式為y=
2
3
x+
5
3
,
令y=0,得x=-
5
2
,故M點(diǎn)的坐標(biāo)為(-
5
2
,0).
故答案為:(-
5
2
,0).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,△ABC中,AB=AC,∠BAC=56°,∠BAC的平分線與AB的垂直平分線OD交于點(diǎn)O,將∠C沿EF(E在BC上,F(xiàn)在AC上)折疊,點(diǎn)C與點(diǎn)O恰好重合,則∠OEC度數(shù)為______°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

從對稱軸角度看,你認(rèn)為哪個(gè)圖形和其它三個(gè)不一樣( 。
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,A(-1,5)、B(-1,0)、C(-4,3).
(1)在圖中作出△ABC關(guān)于y軸的對稱圖形△A1B1C1
(2)寫出點(diǎn)A1、B1、C1的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

將一矩形紙片OABC放在平面直角坐標(biāo)系中,O(0,0),A(6,0),C(0,3).動點(diǎn)Q從點(diǎn)O出發(fā)以每秒1個(gè)單位長的速度沿OC向終點(diǎn)C運(yùn)動,運(yùn)動
2
3
秒時(shí),動點(diǎn)P從點(diǎn)A出發(fā)以相等的速度沿AO向終點(diǎn)O運(yùn)動.當(dāng)其中一點(diǎn)到達(dá)終點(diǎn)時(shí),另一點(diǎn)也停止運(yùn)動.設(shè)點(diǎn)P的運(yùn)動時(shí)間為t(秒).
(1)用含t的代數(shù)式表示OP,OQ;
(2)當(dāng)t=1時(shí),如圖1,將沿△OPQ沿PQ翻折,點(diǎn)O恰好落在CB邊上的點(diǎn)D處,求點(diǎn)D的坐標(biāo);
(3)連接AC,將△OPQ沿PQ翻折,得到△EPQ,如圖2.問:PQ與AC能否平行?PE與AC能否垂直?若能,求出相應(yīng)的t值;若不能,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,將△ABE沿直線AC翻折,使點(diǎn)B與AE邊上的點(diǎn)D重合,若AB=AC=5,AE=9,則CE=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,寫出△ABC各頂點(diǎn)的坐標(biāo),并畫出△ABC關(guān)于x軸對稱的△DEF,你能證明AC=BC嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖a是長方形紙帶,∠DEF=25°,將紙帶沿EF折疊成圖b,再沿BF折疊成圖c,則圖c中的∠CFE的度數(shù)是______°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平行四邊形ABCD的紙片中,AC⊥AB,AC與BD相交于O,將△ABC沿對角線AC翻轉(zhuǎn)180°,得到△AB′C.
(1)求證:以A、C、D、B′為頂點(diǎn)的四邊形是矩形;
(2)若四邊形ABCD的面積S=12cm,求翻轉(zhuǎn)后紙片部分的面積,即S△ACB

查看答案和解析>>

同步練習(xí)冊答案