【題目】已知:AB為⊙O的直徑,C是⊙O上一點,如圖,AB=12,BC=4.BH與⊙O相切于點B,過點C作BH的平行線交AB于點E.
(1)求CE的長;
(2)延長CE到F,使EF=,連接BF并延長BF交⊙O于點G,求BG的長;
(3)在(2)的條件下,連接GC并延長GC交BH于點D,求證:BD=BG.
【答案】(1) CE=4;(2)BG=8;(3)詳見解析.
【解析】
(1)只要證明△ABC∽△CBE,可得,由此即可解決問題;
(2)連接AG,只要證明△ABG∽△FBE,可得,由BE==4,再求出BF,即可解決問題;
(3)通過計算首先證明CF=FG,推出∠FCG=∠FGC,由CF∥BD,推出∠GCF=∠BDG,推出∠BDG=∠BGD即可證明.
解:(1)∵BH與⊙O相切于點B,
∴AB⊥BH,
∵BH∥CE,
∴CE⊥AB,
∵AB是直徑,
∴∠CEB=∠ACB=90°,
∵∠CBE=∠ABC,
∴△ABC∽△CBE,
∴=,
∵AC==4,
∴CE=4.
(2)連接AG.
∵∠FEB=∠AGB=90°,∠EBF=∠ABG,
∴△ABG∽△FBE,
∴=,
∵BE==4,
∴BF==3,
∴=,
∴BG=8.
(3)易知CF=4+=5,
∴GF=BG﹣BF=5,
∴CF=GF,
∴∠FCG=∠FGC,
∵CF∥BD,
∴∠GCF=∠BDG,
∴∠BDG=∠BGD,
∴BG=BD.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知平行四邊形OBDC的對角線相交于點E,其中O(0,0),B(3,4),C(m,0),反比例函數(shù)y=(k≠0)的圖象經(jīng)過點B.
(1)求反比例函數(shù)的解析式;
(2)若點E恰好落在反比例函數(shù)y=上,求平行四邊形OBDC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的正方形網(wǎng)格中,每個小正方形的邊長為1,格點三角形(頂點是網(wǎng)格線的交點的三角形)ABC的頂點A,C的坐標(biāo)分別為(﹣4,5),(﹣1,3).
(1)請在如圖所示的網(wǎng)格平面內(nèi)作出平面直角坐標(biāo)系;
(2)寫出點B的坐標(biāo);
(3)將△ABC向右平移5個單位長度,向下平移2個單位長度,畫出平移后的圖形△A′B′C′;
(4)計算△A′B′C′的面積﹒
(5)在x軸上存在一點P,使PA+PC最小,直接寫出點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在“朗讀者”節(jié)目的影響下,某中學(xué)開展了“好書伴我成長”的讀書活動,為了解3月份七年級300名學(xué)生讀書情況,隨機調(diào)查了七年級50個學(xué)生讀書的冊數(shù),統(tǒng)計數(shù)據(jù)如下表所示:
冊數(shù) | 0 | 1 | 2 | 3 | 4 |
人數(shù) | 4 | 12 | 16 | 17 | 1 |
關(guān)于這組數(shù)據(jù),下列說法正確的是( 。
A. 眾數(shù)是 17 B. 平均數(shù)是 2 C. 中位數(shù)是 2 D. 方差是 2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD的四個頂點分別在反比例函數(shù)y=與y=(x>0,0<m<n)的圖象上,對角線BD∥y軸,且BD⊥AC于點P.已知點B的橫坐標(biāo)為4.
(1)當(dāng)m=4,n=20時.
①若點P的縱坐標(biāo)為2,求直線AB的函數(shù)表達(dá)式.
②若點P是BD的中點,試判斷四邊形ABCD的形狀,并說明理由.
(2)四邊形ABCD能否成為正方形?若能,求此時m,n之間的數(shù)量關(guān)系;若不能,試說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與軸交于,兩點,與軸交于點,且.
(1)求拋物線的解析式及頂點的坐標(biāo);
(2)判斷的形狀,證明你的結(jié)論;
(3)點是軸上的一個動點,當(dāng)的值最小時,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知AB是⊙O的直徑,PB是⊙O的切線,C是⊙O上的點,AC∥OP,M是直徑AB上的動點,A與直線CM上的點連線距離的最小值為d,B與直線CM上的點連線距離的最小值為f.
(1)求證:PC是⊙O的切線;
(2)設(shè)OP=AC,求∠CPO的正弦值;
(3)設(shè)AC=9,AB=15,求d+f的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某家具商場計劃購進(jìn)某種餐桌、餐椅進(jìn)行銷售,有關(guān)信息如下表:
原進(jìn)價(元/張) | 零售價(元/張) | 成套售價(元/套) | |
餐桌 | a | 270 | 500 |
餐椅 | b | 70 |
若購進(jìn)3張餐桌18張餐椅需要1170元;若購進(jìn)5張餐桌25張餐椅需要1750元.
(1)求表中a,b的值;
(2)若該商場購進(jìn)餐椅的數(shù)量是餐桌數(shù)量的5倍還多20張,且餐桌和餐椅的總數(shù)量不超過200張.該商場計劃將全部餐桌配套銷售(一張餐桌和四張餐椅配成一套),其余餐椅以零售方式銷售.設(shè)購進(jìn)餐桌的數(shù)量為x(張),總利潤為W(元),求W關(guān)于x的函數(shù)關(guān)系式,并求出總利潤最大時的進(jìn)貨方案.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com