【題目】為倡導(dǎo)節(jié)能環(huán)保,降低能源消耗,提倡環(huán)保型新能源開(kāi)發(fā),造福社會(huì).某公司研發(fā)生產(chǎn)一種新型智能環(huán)保節(jié)能燈,成本為每件40元.市場(chǎng)調(diào)查發(fā)現(xiàn),該智能環(huán)保節(jié)能燈每件售價(jià)y(元)與每天的銷售量為x(件)的關(guān)系如圖,為推廣新產(chǎn)品,公司要求每天的銷售量不少于1000件,每件利潤(rùn)不低于5元.

1)求每件銷售單價(jià)y(元)與每天的銷售量為x(件)的函數(shù)關(guān)系式并直接寫出自變量x的取值范圍;

2)設(shè)該公司日銷售利潤(rùn)為P元,求每天的最大銷售利潤(rùn)是多少元?

3)在試銷售過(guò)程中,受國(guó)家政策扶持,毎銷售一件該智能環(huán)保節(jié)能燈國(guó)家給予公司補(bǔ)貼mm≤40)元.在獲得國(guó)家每件m元補(bǔ)貼后,公司的日銷售利潤(rùn)隨日銷售量的增大而增大,則m的取值范圍是   (直接寫出結(jié)果).

【答案】1)函數(shù)關(guān)系式為y=﹣x+70,自變量x的取值范圍1000≤x≤2500;(2)每天的最大銷售利潤(rùn)是22500元;(3m的取值范圍是:20≤m≤40

【解析】

1)利用待定系數(shù)法即可解決問(wèn)題;

2)構(gòu)建二次函數(shù),利用二次函數(shù)的性質(zhì)即可解決問(wèn)題;

3)構(gòu)建二次函數(shù),利用二次函數(shù)的性質(zhì)即可解決問(wèn)題;

解:(1)設(shè)每件銷售單價(jià)y(元)與每天的銷售量為x(件)的函數(shù)關(guān)系式為ykx+b,

把(1500,55)與(2000,50)代入ykx+b得,

,

解得:,

每件銷售單價(jià)y(元)與每天的銷售量為x(件)的函數(shù)關(guān)系式為y=﹣x+70

當(dāng)y≥45時(shí),﹣x+70≥45,解得:x≤2500,

自變量x的取值范圍1000≤x≤2500;

2)根據(jù)題意得,P=(y40x=(﹣x+7040x=﹣x2+30x=﹣x15002+22500,

0,P有最大值,

當(dāng)x1500時(shí),Px的增大而增大,

當(dāng)x1500時(shí),P的最大值為22500元,

答:每天的最大銷售利潤(rùn)是22500元;

3)由題意得,P=(﹣x+7040+mx=﹣x2+30+mx

對(duì)稱軸為x5030+m),

∵1000≤x≤2500,

x的取值范圍在對(duì)稱軸的左側(cè)時(shí)Px的增大而增大,

5030+m≥2500,

解得:m≥20,

m的取值范圍是:20≤m≤40

故答案為:20≤m≤40

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,把一個(gè)量角器與一塊30°(∠CAB30°)角的三角板拼在一起,三角板的斜邊AB與量角器所在圓的直徑MN重合,現(xiàn)有射線CP繞點(diǎn)CCA開(kāi)始沿順時(shí)針?lè)较蛞悦棵?/span>2°的速度旋轉(zhuǎn)到與CB重合,就停止旋轉(zhuǎn).在旋轉(zhuǎn)過(guò)程中,射線CP與量角器的半圓弧交于E.連接BE

1)設(shè)旋轉(zhuǎn)x秒后,點(diǎn)E處的讀數(shù)為y°,則yx的函數(shù)關(guān)系式________.

2)當(dāng)CP旋轉(zhuǎn)________秒時(shí),△BCE是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于x的一元二次方程x26xk2=0(k為常數(shù)).

(1)求證:方程有兩個(gè)不相等的實(shí)數(shù)根;

(2)設(shè)x1,x2為方程的兩個(gè)實(shí)數(shù)根,且x1+2x2=14,試求出方程的兩個(gè)實(shí)數(shù)根和k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,OAC上一點(diǎn),以點(diǎn)O為圓心,OC為半徑做圓,與BC相切于點(diǎn)C,點(diǎn)AADBOBO的延長(zhǎng)線于點(diǎn)D,且∠AOD=BAD

1)求證:AB為⊙O的切線;

2)若BC=6,tanABC=,求⊙O的半徑和AD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)如圖1的內(nèi)接三角形,于點(diǎn).請(qǐng)僅用無(wú)刻度的直尺,畫出的平分線.(保留作圖痕跡,不寫作法).

   

2)如圖2,的外接圓,是非直徑的弦,的中點(diǎn),連接,是弦上一點(diǎn),且,請(qǐng)僅用無(wú)刻度的直尺,確定出的內(nèi)心.(保留作圖痕跡,不寫作法)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲口袋中裝有2個(gè)相同的小球,它們分別寫有數(shù)字12;乙口袋中裝有3個(gè)相同的小球,它們分別寫有數(shù)字3,45.利用畫樹(shù)狀圖或列表求下列事件的概率.

1)從兩個(gè)口袋中各隨機(jī)取出1個(gè)小球,恰好兩個(gè)都是奇數(shù);

2)若丙口袋中裝有2個(gè)相同的小球,它們分別寫有數(shù)字67,從三個(gè)口袋中各隨機(jī)取出一個(gè)小球,恰好三個(gè)都是奇數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知在矩形 ABCD 中,AB4,AD3,連接 AC,動(dòng)點(diǎn) Q 以每秒 1 個(gè)單位的速度沿 A→B→C 向點(diǎn) C 勻速運(yùn)動(dòng),同時(shí)點(diǎn) P 以每秒 2 個(gè)單位的速度沿 A→C→D 向點(diǎn) D 勻速運(yùn)動(dòng),連接 PQ,當(dāng)點(diǎn) P 到達(dá)終點(diǎn) D 時(shí),停止運(yùn) 動(dòng),設(shè)APQ 的面積為 S,運(yùn)動(dòng)時(shí)間為 t 秒,則 S t 函數(shù)關(guān)系的圖象大致為(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某書店銷售復(fù)習(xí)資料,已知每本復(fù)習(xí)資料進(jìn)價(jià)為40元,市場(chǎng)調(diào)查發(fā)現(xiàn):若以每本50元銷售,平均每天可銷售90本,在此基礎(chǔ)上,若售價(jià)每提高1元,則平均每天少銷售3本.設(shè)漲價(jià)后每本的售價(jià)為元,書店平均每天銷售這種復(fù)習(xí)資料的利潤(rùn)為元.

1)漲價(jià)后每本復(fù)習(xí)資料的利潤(rùn)為______元,平均每天可銷售______本;

2)求的函數(shù)關(guān)系式;

3)當(dāng)復(fù)習(xí)資料每本售價(jià)為多少時(shí),平均每天的利潤(rùn)最大?最大利潤(rùn)為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線軸交于點(diǎn),與軸交于點(diǎn),拋物線經(jīng)過(guò)點(diǎn),.

(1)求點(diǎn)B的坐標(biāo)和拋物線的解析式;

(2)M(m,0)為x軸上一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)M垂直于x軸的直線與直線AB和拋物線分別交于點(diǎn)P、N,

點(diǎn)在線段上運(yùn)動(dòng),若以,,為頂點(diǎn)的三角形與相似,求點(diǎn)的坐標(biāo);

點(diǎn)軸上自由運(yùn)動(dòng),若三個(gè)點(diǎn),中恰有一點(diǎn)是其它兩點(diǎn)所連線段的中點(diǎn)(三點(diǎn)重合除外),則稱,三點(diǎn)為共諧點(diǎn).請(qǐng)直接寫出使得三點(diǎn)成為共諧點(diǎn)的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案