(2012•鎮(zhèn)江)如圖,在平面直角坐標(biāo)系xOy中,直線AB經(jīng)過點A(-4,0)、B(0,4),⊙O的半徑為1(O為坐標(biāo)原點),點P在直線AB上,過點P作⊙O的一條切線PQ,Q為切點,則切線長PQ的最小值為
7
7
分析:連接OP.根據(jù)勾股定理知PQ2=OP2-OQ2,當(dāng)OP⊥AB時,線段OP最短,即線段PQ最短.
解答:解:連接OP、OQ.
∵PQ是⊙O的切線,
∴OQ⊥PQ;
根據(jù)勾股定理知PQ2=OP2-OQ2,
∵當(dāng)PO⊥AB時,線段PQ最短;
又∵A(-4,0)、B(0,4),
∴OA=OB=4,
∴AB=4
2

∴OP=
1
2
AB=2
2
,
∴PQ=
7
;
故答案是:
7
點評:本題考查了切線的判定與性質(zhì)、坐標(biāo)與圖形性質(zhì)以及矩形的性質(zhì)等知識點.運用切線的性質(zhì)來進行計算或論證,常通過作輔助線連接圓心和切點,利用垂直構(gòu)造直角來解決有關(guān)問題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•鎮(zhèn)江)如圖,∠1是Rt△ABC的一個外角,直線DE∥BC,分別交邊AB、AC于點D、E,∠1=120°,則∠2的度數(shù)是
30°
30°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•鎮(zhèn)江)如圖,E是?ABCD的邊CD上一點,連接AE并延長交BC的延長線于點F,且AD=4,
CE
AB
=
1
3
,則CF的長為
2
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•鎮(zhèn)江)如圖,AB是⊙O的直徑,DF⊥AB于點D,交弦AC于點E,F(xiàn)C=FE.
(1)求證:FC是⊙O的切線;
(2)若⊙O的半徑為5,cos∠ECF=
25
,求弦AC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•鎮(zhèn)江)如圖,在平面直角坐標(biāo)系xOy中,直線y=2x+n與x軸、y軸分別交于點A、B,與雙曲線y=
4
x
在第一象限內(nèi)交于點C(1,m).
(1)求m和n的值;
(2)過x軸上的點D(3,0)作平行于y軸的直線l,分別與直線AB和雙曲線y=
4
x
交于點P、Q,求△APQ的面積.

查看答案和解析>>

同步練習(xí)冊答案