【題目】頤和園是我國現(xiàn)存規(guī)模最大,保存最完整的古代皇家園林,它和承德避暑山莊、蘇州拙政園、蘇州留園并稱為中國四大名園.該園有一個六角亭,如果它的地基是半徑為2米的正六邊形,那么這個地基的面積是2

【答案】6
【解析】解:如圖所示:
連接OB,OC,過點O作OH⊥BC于H,
∵六邊形ABCDEF是正六邊形,
∴∠BOC= ×360°=60°,
∵OB=OC,
∴△OBC是等邊三角形,
∴BC=OB=OC,
∴BH= BC=1,
∴OH= ,
∴S正六邊形=6SOBC=6× ×2× =6
故答案為:6

首先根據(jù)題意畫出圖形,易得△OBC是等邊三角形,繼而可得正六邊形的邊長,由S正六邊形=6SOBC求得結(jié)果即可.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】若平行四邊形ABCD的一個角的平分線把一條邊分成長是4cm5cm的兩條線段,則平行四邊形ABCD的周長是__________cm.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知數(shù)軸上A,B兩點對應(yīng)數(shù)分別為-25,P為數(shù)軸上一點,對應(yīng)數(shù)為x.

(1)若P為線段AB的三等分點(把一條線段平均分成相等的三部分的兩個點),求P點對應(yīng)的數(shù).

(2)數(shù)軸上是否存在點P,使P點到A點,B點距離和為10?若存在,求出x值;若不存在,請說明理由.

(3)若點A,點B和點P(P點在原點)同時向左運動,它們的速度分別為1,6,3個長度單位/分,則第幾分鐘時,A,B,P三點中,其中一點是另外兩點連成的線段的中點?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】學校食堂廚房的桌子上整齊地擺放著若干相同規(guī)格的碟子,碟子的個數(shù)與碟子的高度的關(guān)系如下表:

碟子的個數(shù)

碟子的高度(單位:cm

1

2

2

2+1.5

3

2+3

4

2+4.5

1)當桌子上放有x(個)碟子時,請寫出此時碟子的高度(用含x的式子表示);

2)分別從三個方向上看,其三視圖如上圖所示,廚房師傅想把它們整齊疊成一摞,求疊成一摞后的高度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:拋物線y=x2+(b﹣1)x﹣5.
(1)寫出拋物線的開口方向和它與y軸交點的坐標;
(2)若拋物線的對稱軸為直線x=1,求b的值,并畫出拋物線的草圖(不必列表);
(3)如圖,若b>3,過拋物線上一點P(﹣1,c)作直線PA⊥y軸,垂足為A,交拋物線于另一點B,且BP=2PA,求這條拋物線所對應(yīng)的二次函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校九年級兩個班,各選派名學生參加學校舉行的漢字聽寫大賽預(yù)賽,各參賽選手的成績?nèi)缦拢?/span>

班:,,,,,,

班:,,,,,

通過整理,得到數(shù)據(jù)分析表如下:

班級

最高分

平均分

中位數(shù)

眾數(shù)

方差

直接寫出表中、的值;

依據(jù)數(shù)據(jù)分析表,有人說:最高分在班,班的成績比班好,但也有人說班的成績要好,請給出兩條支持班成績好的理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AC平分∠BCD,ABAD,AEBCE,AFCDF.

(1)若∠ABE=60°,求∠CDA的度數(shù);

(2)AE=2,BE=1,CD=4.求四邊形AECD的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】根據(jù)下列要求,解答相關(guān)問題.
請補全以下求不等式﹣2x2﹣4x>0的解集的過程.
①構(gòu)造函數(shù),畫出圖象:根據(jù)不等式特征構(gòu)造二次函數(shù)y=﹣2x2﹣4x;并在下面的坐標系中(圖1)畫出二次函數(shù)y=﹣2x2﹣4x的圖象(只畫出圖象即可).
②求得界點,標示所需,當y=0時,求得方程﹣2x2﹣4x=0的解為多少?;并用鋸齒線標示出函數(shù)y=﹣2x2﹣4x圖象中y>0的部分.
③借助圖象,寫出解集:由所標示圖象,可得不等式﹣2x2﹣4x>0的解集為﹣2<x<0.請你利用上面求一元一次不等式解集的過程,求不等式x2﹣2x+1≥4的解集.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,在ABC中,AE、BF是角平分線,它們相交于點O,AD是高BAC=54°,C=66°,求DAC、BOA的度數(shù)

查看答案和解析>>

同步練習冊答案