【題目】如圖,在RtABC中,∠ACB = 90,DAB的中點(diǎn),AEDC,CEDA

1)求證:四邊形ADCE是菱形;

2)連接DE,若AC =BC =2,求證:△ADE是等邊三角形.

【答案】1)詳見解析;(2)詳見解析

【解析】

1)先根據(jù)題意證明四邊形ADCE是平行四邊形,再由直角三角形斜邊中線等于斜邊的一半可得AD= BD=CD,即可可求證結(jié)論;

2)在RtABC中,由三角函數(shù)值可知∠CAB=30,繼而根據(jù)菱形的性質(zhì)可知AE = AD,∠EAD=2CAB=60,進(jìn)而即可求證結(jié)論.

證明:(1)∵ AEDCCEDA,

四邊形ADCE是平行四邊形.

RtABC中, DAB的中點(diǎn),

AD= BD=CD=

四邊形ADCE是菱形.

2)在RtABC中,AC =,BC =2,

CAB=30

四邊形ADCE是菱形.

AE = AD,∠EAD=2CAB=60

ADE是等邊三角形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在銳角ABC中,AB=4,BC=5,∠ACB=45°,將ABC繞點(diǎn)B按逆時(shí)針方向旋轉(zhuǎn),得到A1BC1

1)如圖1,當(dāng)點(diǎn)C1在線段CA的延長(zhǎng)線上時(shí),求∠CC1A1的度數(shù);

2)如圖2,連接AA1,CC1.若ABA1的面積為4,求CBC1的面積;

3)如圖3,點(diǎn)E為線段AB中點(diǎn),點(diǎn)P是線段AC上的動(dòng)點(diǎn),在ABC繞點(diǎn)B按逆時(shí)針方向旋轉(zhuǎn)過程中,點(diǎn)P的對(duì)應(yīng)點(diǎn)是點(diǎn)P1,求線段EP1長(zhǎng)度的最大值與最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,樓頂有一根天線,為了測(cè)量樓的高度,在地面上取成一條直線的三點(diǎn)E、D、C,在點(diǎn)C處測(cè)得天線頂端A的仰角為60°,從點(diǎn)C走到點(diǎn)D,CD6米,從點(diǎn)D處測(cè)得天線下端B的仰角為45°.又知A、BE在一條線上,AB25米,求樓高BE

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形中,,的垂直平分線交對(duì)角線于點(diǎn),垂足為.連接,則等于(

A.150°B.140°C.130°D.120°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線軸的負(fù)半軸交于點(diǎn),與軸交于點(diǎn),連結(jié),點(diǎn)C(6,)在拋物線上,直線軸交于點(diǎn)

(1)的值及直線的函數(shù)表達(dá)式;

(2)點(diǎn)軸正半軸上,點(diǎn)軸正半軸上,連結(jié)與直線交于點(diǎn),連結(jié)并延長(zhǎng)交于點(diǎn),若的中點(diǎn).

①求證:;

②設(shè)點(diǎn)的橫坐標(biāo)為,求的長(zhǎng)(用含的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,拋物線x軸交于點(diǎn)A,BAB的左側(cè)),拋物線的對(duì)稱軸與x軸交于點(diǎn)D,且OB=2OD

1)當(dāng)時(shí),

①寫出拋物線的對(duì)稱軸;

②求拋物線的表達(dá)式;

2)存在垂直于x軸的直線分別與直線和拋物線交于點(diǎn)PQ,且點(diǎn)PQ均在x軸下方,結(jié)合函數(shù)圖象,求b的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ACB = 90,DAB的中點(diǎn),AEDC,CEDA

1)求證:四邊形ADCE是菱形;

2)連接DE,若AC =,BC =2,求證:△ADE是等邊三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)計(jì)算:;

2)尺規(guī)作圖.如圖,已知和線段a,求作,使,,.(不寫作法,保留作圖痕跡.)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形中,點(diǎn)上,連接,上一點(diǎn),

(1)求證:;

(2),,,求的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案