【題目】如圖,在△ABC中,D是BC邊上的一點(diǎn),E是AD的中點(diǎn),過(guò)A點(diǎn)作BC的平行線交CE的延長(zhǎng)線于點(diǎn)F,且AF=BD,連接BF.
(1)線段BD與CD有什么數(shù)量關(guān)系,并說(shuō)明理由;
(2)當(dāng)△ABC滿足什么條件時(shí),四邊形AFBD是矩形?并說(shuō)明理由.
【答案】
(1)解:BD=CD.
理由如下:依題意得AF∥BC,
∴∠AFE=∠DCE,
∵E是AD的中點(diǎn),
∴AE=DE,
在△AEF和△DEC中,
,
∴△AEF≌△DEC(AAS),
∴AF=CD,
∵AF=BD,
∴BD=CD
(2)解:當(dāng)△ABC滿足:AB=AC時(shí),四邊形AFBD是矩形.
理由如下:∵AF∥BD,AF=BD,
∴四邊形AFBD是平行四邊形,
∵AB=AC,BD=CD(三線合一),
∴∠ADB=90°,
∴AFBD是矩形.
【解析】(1)根據(jù)兩直線平行,內(nèi)錯(cuò)角相等求出∠AFE=∠DCE,然后利用“角角邊”證明△AEF和△DEC全等,根據(jù)全等三角形對(duì)應(yīng)邊相等可得AF=CD,再利用等量代換即可得證;(2)先利用一組對(duì)邊平行且相等的四邊形是平行四邊形證明四邊形AFBD是平行四邊形,再根據(jù)一個(gè)角是直角的平行四邊形是矩形,可知∠ADB=90°,由等腰三角形三線合一的性質(zhì)可知必須是AB=AC.
【考點(diǎn)精析】關(guān)于本題考查的矩形的判定方法,需要了解有一個(gè)角是直角的平行四邊形叫做矩形;有三個(gè)角是直角的四邊形是矩形;兩條對(duì)角線相等的平行四邊形是矩形才能得出正確答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某次世界魔方大賽吸引世界各地共600名魔方愛(ài)好者參加,本次大賽首輪進(jìn)行3×3階魔方賽,組委會(huì)隨機(jī)將愛(ài)好者平均分到20個(gè)區(qū)域,每個(gè)區(qū)域30名同時(shí)進(jìn)行比賽,完成時(shí)間小于8秒的愛(ài)好者進(jìn)入下一輪角逐;如圖是3×3階魔方賽A區(qū)域30名愛(ài)好者完成時(shí)間統(tǒng)計(jì)圖,求: ①A區(qū)域3×3階魔方愛(ài)好者進(jìn)入下一輪角逐的人數(shù)的比例(結(jié)果用最簡(jiǎn)分?jǐn)?shù)表示).
②若3×3階魔方賽各個(gè)區(qū)域的情況大體一致,則根據(jù)A區(qū)域的統(tǒng)計(jì)結(jié)果估計(jì)在3×3階魔方賽后進(jìn)入下一輪角逐的人數(shù).
③若3×3階魔方賽A區(qū)域愛(ài)好者完成時(shí)間的平均值為8.8秒,求該項(xiàng)目賽該區(qū)域完成時(shí)間為8秒的愛(ài)好者的概率(結(jié)果用最簡(jiǎn)分?jǐn)?shù)表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,花叢中有一路燈桿AB.在燈光下,小明在D點(diǎn)處的影長(zhǎng)DE=3米,沿BD方向行走到達(dá)G點(diǎn),DG=5米,這時(shí)小明的影長(zhǎng)GH=5米.如果小明的身高為1.7米,求路燈桿AB的高度(精確到0.1米).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知反比例函數(shù)y= 與一次函數(shù)y=x+b的圖象在第一象限相交于點(diǎn)A(1,﹣k+4).
(1)試確定這兩個(gè)函數(shù)的表達(dá)式;
(2)求出這兩個(gè)函數(shù)圖象的另一個(gè)交點(diǎn)B的坐標(biāo),并求△AOB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=x2+bx+c與x軸交于A(﹣2,0),B(6,0)兩點(diǎn).
(1)求該拋物線的解析式;
(2)求該拋物線的對(duì)稱軸以及頂點(diǎn)坐標(biāo);
(3)點(diǎn)P為y軸右側(cè)拋物線上一個(gè)動(dòng)點(diǎn),若S△PAB=32,求出此時(shí)P點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:關(guān)于x的方程x2﹣(m+2)x+m+1=0.
(1)求證:該方程總有實(shí)數(shù)根;
(2)若二次函數(shù)y=x2﹣(m+2)x+m+1(m>0)與x軸交點(diǎn)為A,B(點(diǎn)A在點(diǎn)B的左邊),且兩交點(diǎn)間的距離是2,求二次函數(shù)的表達(dá)式;
(3)橫、縱坐標(biāo)都是整數(shù)的點(diǎn)叫做整點(diǎn).
在(2)的條件下,垂直于y軸的直線y=n與拋物線交于點(diǎn)E,F(xiàn).若拋物線在點(diǎn)E,F(xiàn)之間的部分與線段EF所圍成的區(qū)域內(nèi)(包括邊界)恰有7個(gè)整點(diǎn),結(jié)合函數(shù)的圖象,直接寫(xiě)出n的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】關(guān)于x的一元二次方程x2+(2m+1)x+m2﹣1=0有兩個(gè)不相等的實(shí)數(shù)根.
(1)求m的取值范圍;
(2)寫(xiě)出一個(gè)滿足條件的m的值,并求此時(shí)方程的根.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com