(2009•天津)如圖①:要設(shè)計一幅寬20cm,長30cm的矩形圖案,其中有兩橫兩豎的彩條,橫、豎彩條的寬度比為2:3,如果要使所有彩條所占面積為原矩形圖案面積的三分之一,應(yīng)如何設(shè)計每個彩條的寬度?
分析:由橫、豎彩條的寬度比為2:3,可設(shè)每個橫彩條的寬為2x,則每個豎彩條的寬為3x.為更好地尋找題目中的等量關(guān)系,將橫、豎彩條分別集中,原問題轉(zhuǎn)化為如圖②的情況,得到矩形ABCD.
結(jié)合以上分析完成填空:
如圖②:用含x的代數(shù)式表示:AB=______cm;AD=______cm;矩形ABCD的面積為______cm2;列出方程并完成本題解答.

【答案】分析:因為每個豎彩條的寬為3x,圖中有兩個豎條,所以得到AB=20-2•3x=20-6x,又每個橫彩條的寬為2x,圖中有兩個橫條,所以BC=30-2•2x=30-4x,然后用AB•BC即為矩形ABCD的面積,從題中已知可知矩形ABCD的面積等于總體面積的,根據(jù)題中的等量關(guān)系:矩形ABCD的面積=(1-)×30×20,列出方程求解,再根據(jù)條件取值.
解答:解:(1)(20-6x),(30-4x),(24x2-260x+600);

(2)根據(jù)題意,得24x2-260x+600=(1-)×20×30,
整理,得6x2-65x+50=0,
解方程,得x1=,x2=10(不合題意,舍去),
則2x=,3x=,
答:每個橫、豎彩條的寬度分別為cm,cm.
點評:用含x的代數(shù)式正確表示矩形ABCD的長與寬是列對方程的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2009年全國中考數(shù)學(xué)試題匯編《投影與視圖》(01)(解析版) 題型:選擇題

(2009•天津)如圖是一根鋼管的直觀圖,則它的三視圖為( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年全國中考數(shù)學(xué)試題匯編《圖形認(rèn)識初步》(01)(解析版) 題型:填空題

(2009•天津)如圖,是由12個邊長相等的正三角形鑲嵌而成的平面圖形,則圖中的平行四邊形共有    個.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年廣東省廣州市番禺區(qū)中考數(shù)學(xué)一模試卷(解析版) 題型:選擇題

(2009•天津)如圖是一根鋼管的直觀圖,則它的三視圖為( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年天津市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2009•天津)如圖①:要設(shè)計一幅寬20cm,長30cm的矩形圖案,其中有兩橫兩豎的彩條,橫、豎彩條的寬度比為2:3,如果要使所有彩條所占面積為原矩形圖案面積的三分之一,應(yīng)如何設(shè)計每個彩條的寬度?
分析:由橫、豎彩條的寬度比為2:3,可設(shè)每個橫彩條的寬為2x,則每個豎彩條的寬為3x.為更好地尋找題目中的等量關(guān)系,將橫、豎彩條分別集中,原問題轉(zhuǎn)化為如圖②的情況,得到矩形ABCD.
結(jié)合以上分析完成填空:
如圖②:用含x的代數(shù)式表示:AB=______cm;AD=______cm;矩形ABCD的面積為______cm2;列出方程并完成本題解答.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年天津市中考數(shù)學(xué)試卷(解析版) 題型:填空題

(2009•天津)如圖,是由12個邊長相等的正三角形鑲嵌而成的平面圖形,則圖中的平行四邊形共有    個.

查看答案和解析>>

同步練習(xí)冊答案