如圖8,在10×10的正方形網(wǎng)格中,每個小正方形的邊長都為1,網(wǎng)格中有一個格點

ABC(即三角形的頂點都在格點上).

  (1)在圖中作出△ABC關(guān)于直線l對稱的△A1B1C1

      (要求:AA1,BB1CC1相對應(yīng))

 (2)在(1)問的結(jié)果下,連接BB1,CC1,求四邊形

BB1C1C的面積.

解(1)如圖,△A1B1C1 是△ABC關(guān)于直線l的對稱圖形.

           …………………………………………(5分)

   (描點3分,連線1分,結(jié)論1分)

(2)由圖得

四邊形BB1 C1C是等腰梯形,BB1= 4,CC1=2,高是4.

………………………………………………(6分)

S四邊形BB1C1C  =

             ==.  …………(9分)

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

(2012•東營)(1)如圖1,在正方形ABCD中,E是AB上一點,F(xiàn)是AD延長線上一點,且DF=BE.求證:CE=CF;
(2)如圖2,在正方形ABCD中,E是AB上一點,G是AD上一點,如果∠GCE=45°,請你利用(1)的結(jié)論證明:GE=BE+GD.
(3)運用(1)(2)解答中所積累的經(jīng)驗和知識,完成下題:
如圖3,在直角梯形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC,E是AB上一點,且∠DCE=45°,BE=4,DE=10,求直角梯形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(本題12分)如圖①,平面直角坐標系中,已知C(0,10),點P、Q同時從點出發(fā),在線段OC上做往返勻速運動,設(shè)運動時間為t(s),點P、Q離開點O的距離為S圖②中線段OA、OB(A、B都在格點上)分別表示當0≤t≤6時P、Q兩點離開點O的距離S與運動時間t(s)的函數(shù)圖像.

【小題1】⑴請在圖②中分別畫出當6≤t≤10時P、Q兩點離開點O的距離S與運動時間t(s)的函數(shù)圖像.
【小題2】⑵求出P、Q兩點第一次相遇的時刻.
【小題3】⑶如圖①,在運動過程中,以O(shè)P為一邊畫正方形OPMD,點D在x軸正半軸上,作QE∥PD交x軸于E,設(shè)△PMD與△OQE重合部分的面積 為y,試求出當0≤t≤10時y與t(s)的函數(shù)關(guān)系式(寫出相應(yīng)的t的范圍).

查看答案和解析>>

科目:初中數(shù)學 來源:2011年江蘇省泰興市實驗初級中學九年級第一次模擬考試數(shù)學卷 題型:解答題

(本題12分)如圖①,平面直角坐標系中,已知C(0,10),點P、Q同時從點出發(fā),在線段OC上做往返勻速運動,設(shè)運動時間為t(s),點P、Q離開點O的距離為S圖②中線段OA、OB(A、B都在格點上)分別表示當0≤t≤6時P、Q兩點離開點O的距離S與運動時間t(s)的函數(shù)圖像.

【小題1】⑴請在圖②中分別畫出當6≤t≤10時P、Q兩點離開點O的距離S與運動時間t(s)的函數(shù)圖像.
【小題2】⑵求出P、Q兩點第一次相遇的時刻.
【小題3】⑶如圖①,在運動過程中,以O(shè)P為一邊畫正方形OPMD,點D在x軸正半軸上,作QE∥PD交x軸于E,設(shè)△PMD與△OQE重合部分的面積 為y,試求出當0≤t≤10時y與t(s)的函數(shù)關(guān)系式(寫出相應(yīng)的t的范圍).

查看答案和解析>>

科目:初中數(shù)學 來源:2012年江蘇省淮安市清浦區(qū)中考數(shù)學模擬試卷(二)(解析版) 題型:解答題

如圖,小明將一張直角梯形紙片沿虛線剪開,得到矩形ABCD和三角形EGF兩張紙片,測得AB=5,AD=4,EF=.在進行如下操作時遇到了下面的幾個問題,請你幫助解決.
(1)請你求出FG的長度.
(2)在(1)的條件下,小明先將三角形的邊EG和矩形邊AB重合,然后將△EFG沿直線BC向右平移,至F點與B重合時停止.在平移過程中,設(shè)G點平移的距離為x,兩紙片重疊部分面積為.y,求在平移的整個過程中,y與x的函數(shù)關(guān)系式,并求當重疊部分面積為10時,平移距離x的值.
(3)在(2)的操作中,小明發(fā)現(xiàn)在平移過程中,雖然有時平移的距離不等,但兩紙片重疊的面積卻是相等的;而有時候平移的距離不等,兩紙片重疊部分的面積也 不可能相等.請?zhí)剿鬟@兩種情況下重疊部分面積y的范圍(直接寫出結(jié)果).

查看答案和解析>>

同步練習冊答案