【題目】如圖,四邊形ABCD是⊙O的內接四邊形,∠ABC=2∠D,連接OA、OB、OC、AC,OB與AC相交于點E,若∠COB=3∠AOB,OC=2 ,則圖中陰影部分面積是(結果保留π和根號)
【答案】3π﹣2
【解析】解:∵四邊形ABCD是⊙O的內接四邊形, ∴∠ABC+∠D=180°,
∵∠ABC=2∠D,
∴∠D+2∠D=180°,
∴∠D=60°,
∴∠AOC=2∠D=120°,
∵OA=OC,
∴∠OAC=∠OCA=30°;
∵∠COB=3∠AOB,
∴∠AOC=∠AOB+3∠AOB=120°,
∴∠AOB=30°,
∴∠COB=∠AOC﹣∠AOB=90°,
在Rt△OCE中,OC=2 ,
∴OE=OCtan∠OCE=2 tan30°=2 × =2,
∴S△OEC= OEOC= ×2×2 =2 ,
∴S扇形OBC= =3π,
∴S陰影=S扇形OBC﹣S△OEC=3π﹣2 .
故答案為:3π﹣2 .
根據(jù)四邊形ABCD是⊙O的內接四邊形得到∠ABC+∠D=180°,根據(jù)∠ABC=2∠D得到∠D+2∠D=180°,從而求得∠D=60°,最后根據(jù)OA=OC得到∠OAC=∠OCA=30°,根據(jù)∠COB=3∠AOB得到∠AOB=30°,從而得到∠COB為直角,然后利用S陰影=S扇形OBC﹣S△OEC求解.
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩個工程隊共同承擔一項筑路任務,甲隊單獨施工完成此項任務比乙隊單獨施工完成此項任務多用10天,且甲隊單獨施工45天和乙隊單獨施工30天的工作量相同.
(1)甲、乙兩隊單獨完成此項任務各需多少天?
(2)若甲、乙兩隊共同工作了3天后,乙隊因設備檢修停止施工,由甲隊繼續(xù)施工,為了不影響工程進度,甲隊的工作效率提高到原來的2倍,要使甲隊總的工作量不少于乙隊的工作量的2倍,那么甲隊至少再單獨施工多少天?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】請先觀察下列算式,再填空:32-12=8×1,52-32=8×2,72-52=8×3;92-72=8×4,…,通過觀察歸納,寫出用n(n為正整數(shù))反映這種規(guī)律的一般結論:_______________________
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】數(shù)軸是初中數(shù)學的一個重要工具,利用數(shù)軸可以將數(shù)與形完美地結合,研究數(shù)軸我們發(fā)現(xiàn):若數(shù)軸上點A、點B表示的數(shù)分別為a、b,則A,B兩點之間的距離AB=|a﹣b|,線段AB的中點表示的數(shù)為.如:如圖,數(shù)軸上點A表示的數(shù)為﹣2,點B表示的數(shù)為8,則A、兩點間的距離AB=|﹣2﹣8|=10,線段AB的中點C表示的數(shù)為=3,點P從點A出發(fā),以每秒3個單位長度的速度沿數(shù)軸向右勻速運動,同時點Q從點B出發(fā),以每秒2個單位長度的速度向左勻速運動.設運動時間為t秒(t>0).
(1)用含t的代數(shù)式表示:t秒后,點P表示的數(shù)為 ,點Q表示的數(shù)為 .
(2)求當t為何值時,P、Q兩點相遇,并寫出相遇點所表示的數(shù);
(3)求當t為何值時,PQ=AB;
(4)若點M為PA的中點,點N為PB的中點,點P在運動過程中,線段MN的長度是否發(fā)生變化?若變化,請說明理由;若不變,請求出線段MN的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,∠ABC=60°,AB=12cm,將△ABC以點B為中心順時針旋轉,使點C旋轉到AB邊延長線上的點D處,則AC邊掃過的圖形(陰影部分)的面積是cm2 . (結果保留π).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)如圖,因為直線AB、CD相交于點P,AB∥EF,所以CD不平行于EF(________________________________________________________);
(2)因為直線a∥b,b∥c,所以a∥c(________________________________).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖, 為 的直角邊 上一點,以 為半徑的 與斜邊 相切于點 ,交 于點 .已知 , .
(1)求 的長;
(2)求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正六邊形A1B1C1D1E1F1的邊長為1,它的六條對角線又圍成一個正六邊形A2B2C2D2E2F2 , 如此繼續(xù)下去,則正六邊形A4B4C4D4E4F4的面積是.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com