【題目】已知:在△ABC中,AC=BC,∠ACB=90°,點(diǎn)DAB的中點(diǎn),點(diǎn)EAB邊上一點(diǎn).

1)直線BF垂直于直線CE于點(diǎn)F,交CD于點(diǎn)G(如圖①),求證:AE=CG

2)直線AH垂直于直線CE,垂足為點(diǎn) H,交CD的延長線于點(diǎn)M(如圖②),

求證:CM=BE

【答案】1)見詳解;(2)見詳解.

【解析】

1)首先根據(jù)點(diǎn)DAB中點(diǎn),∠ACB=90°,可得出∠ACD=BCD=45°,判斷出△AEC≌△CGB,即可得出AE=CG
2)根據(jù)垂直的定義得出∠CMA+MCH=90°,∠BEC+MCH=90°,再根據(jù)AC=BC,∠ACM=CBE=45°,得出△BCE≌△CAM,進(jìn)而證明出BE=CM

1)證明:∵點(diǎn)DAB中點(diǎn),AC=BC,
ACB=90°,
CDAB,∠ACD=BCD=45°
∴∠CAD=CBD=45°,
∴∠CAE=BCG
又∵BFCE,
∴∠CBG+BCF=90°
又∵∠ACE+BCF=90°,
∴∠ACE=CBG
AECCGB中,


∴△AEC≌△CGBASA),
AE=CG,

2
證明:∵CHHMCDED,
∴∠CMA+MCH=90°,∠BEC+MCH=90°,
∴∠CMA=BEC
又∵∠ACM=CBE=45°,
BCECAM中,

∴△BCE≌△CAMAAS),
BE=CM

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線y=kx(k>0)與雙曲線交于AB兩點(diǎn),且點(diǎn)A的縱坐標(biāo)為4,第一象限的雙曲線上有一點(diǎn),過點(diǎn)PPQ//y軸交直線AB于點(diǎn)Q

1)直接寫出k的值及點(diǎn)B的坐標(biāo):

2)求線段PQ的長;

3)如果在直線y=kx上有一點(diǎn)M,且滿足BPM的面積等于12,求點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小軍自制的勻速直線運(yùn)動遙控車模型甲、乙兩車同時分別從出發(fā),沿直線軌道同時到達(dá)處,已知乙的速度是甲的速度的1.5倍,甲、乙兩遙控車與處的距離(米)與時間(分鐘)的函數(shù)關(guān)系如圖所示,則下列結(jié)論中:①的距離為120米;②乙的速度為60/分;③的值為;④若甲、乙兩遙控車的距離不少于10米時,兩車信號不會產(chǎn)生互相干擾,則兩車信號不會產(chǎn)生互相干擾的的取值范圍是,其中正確的有( )個

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若非零數(shù)ab互為相反數(shù),cd互為倒數(shù),;

1)求的值;(2)求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,如果一個點(diǎn)的縱坐標(biāo)等于橫坐標(biāo)的2倍,那么這個點(diǎn)叫做倍點(diǎn).例如:點(diǎn)(1,2)是倍點(diǎn)。

(1)已知第一象限內(nèi)的點(diǎn)Ax軸的距離是1,若點(diǎn)A是倍點(diǎn),則點(diǎn)A的坐標(biāo)為________

(2)求反比例函數(shù)圖像上的所有倍點(diǎn);

(3)請分析一次函數(shù)為常數(shù))圖像上倍點(diǎn)的情況.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小剛和小強(qiáng)從兩地同時出發(fā),小剛騎自行車,小強(qiáng)步行,沿同一條路線相向勻速而行.出發(fā)后兩小時兩人相遇,相遇時小剛比小強(qiáng)多行進(jìn)24千米.相遇后05小時小剛到達(dá)地.

1)兩人的行進(jìn)速度分別是多少?

2)相遇后經(jīng)過多少時間小強(qiáng)到達(dá)地?

3兩地相距多少千米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】快遞公司為提高快遞分揀的速度,決定購買機(jī)器人來代替人工分揀,兩種型號的機(jī)器人的工作效率和價格如表:

型號

每臺每小時分揀快遞件數(shù)()

1000

800

每臺價格(萬元)

5

3

該公司計劃購買這兩種型號的機(jī)器人共10臺,并且使這10臺機(jī)器人每小時分揀快遞件數(shù)總和不少于8500

(1)設(shè)購買甲種型號的機(jī)器人x臺,購買這10臺機(jī)器人所花的費(fèi)用為y萬元,求yx之間的關(guān)系式;

(2)購買幾臺甲種型號的機(jī)器人,能使購買這10臺機(jī)器人所花總費(fèi)用最少?最少費(fèi)用是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)如圖,已知點(diǎn)在線段上,且,,點(diǎn)、分別是的中點(diǎn),求線段的長度;

(2)若點(diǎn)是線段上任意一點(diǎn),且,點(diǎn)、分別是、的中點(diǎn),請直接寫出線段的長度;(結(jié)果用含、的代數(shù)式表示)

(3)在(2)中,把點(diǎn)是線段上任意一點(diǎn)改為:點(diǎn)是直線上任意一點(diǎn),其他條件不變,則線段的長度會變化嗎?若有變化,求出結(jié)果.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知等腰三角形ABC中,AB=AC,點(diǎn)DE分別在邊AB、AC上,且AD=AE,連接BECD,交于點(diǎn)F

(1)判斷∠ABE與∠ACD的數(shù)量關(guān)系,并說明理由;

(2)求證:過點(diǎn)AF的直線垂直平分線段BC

查看答案和解析>>

同步練習(xí)冊答案