【題目】已知:如圖,在△ABC中AB=AC,BD平分∠ABC交AC于點(diǎn)D,DE平分∠ADB交AB于點(diǎn)E,CF∥AB交ED的延長線于F,若∠A=52°,求∠DFC的度數(shù).
【答案】80°
【解析】
根據(jù)三角形的內(nèi)角和以及等腰三角形的性質(zhì)可得到∠ABC=∠ACB=64°,根據(jù)角平分線的定義得到∠1=∠2=∠ABC=32°,再根據(jù)三角形外角的性質(zhì)可得出∠ADB的度數(shù),從而可得出∠3的度數(shù),可進(jìn)一步得出∠AEF的度數(shù),最后根據(jù)平行線的性質(zhì)即可得到結(jié)論.
解:∵∠A=52°,∠A+∠ABC+∠ACB=180°,∴∠ABC+∠ACB=128°,
∵AB=AC,
∴∠ABC=∠ACB=64°,
∵BD平分∠ABC,
∴∠1=∠2=∠ABC=32°,
∴∠ADB=∠ACB+∠2=64°+32°=96°,
∵DE平分∠ADB,
∴∠3=∠ADB=48°,
∴∠AEF=∠1+∠3=32°+48°=80°,
∵CF∥AB,
∴∠DFC=∠AEF=80°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,方格紙中的每個(gè)小方格都是邊長為1個(gè)單位長度的正方形,△ABC的頂點(diǎn)都在格點(diǎn)上,建立平面直角坐標(biāo)系
(1)點(diǎn)A的坐標(biāo)為 ,點(diǎn)C的坐標(biāo)為 .
(2)以原點(diǎn)O為中心,將△ABC逆時(shí)針旋轉(zhuǎn)90°,得到△A1B1C1請(qǐng)?jiān)诰W(wǎng)格內(nèi)畫出△A1B1C1,并寫出點(diǎn)A1和B1的坐標(biāo) , .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校九年級(jí)有1200名學(xué)生,在體育考試前隨機(jī)抽取部分學(xué)生進(jìn)行跳繩測試,根據(jù)測試成績制作了下面兩個(gè)統(tǒng)計(jì)圖.請(qǐng)根據(jù)相關(guān)信息,解答下列問題:
(Ⅰ)本次參加跳繩測試的學(xué)生人數(shù)為___________,圖①中的值為___________;
(Ⅱ)求本次調(diào)查獲取的樣本數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù);
(Ⅲ)根據(jù)樣本數(shù)據(jù),估計(jì)該校九年級(jí)跳繩測試中得3分的學(xué)生約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】解不等式組
請(qǐng)結(jié)合題意,完成本題的解答:
(Ⅰ)解不等式①,得______;
(Ⅱ)解不等式②,得______;
(Ⅲ)把不等式①和②的解集在數(shù)軸上表示出來:
(Ⅳ)原不等式組的解集為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】位于重慶市匯北區(qū)的照母山森林公園乘承“近自然”生態(tài)理念營造森林風(fēng)景,“雖由人作,宛自天開”,凸顯自然風(fēng)骨與原生野趣.山中最為矚目的經(jīng)典當(dāng)屬攬星塔.登臨塔頂,可上九天邀月攬星,可鳥瞰新區(qū),領(lǐng)略附近樓宇的壯美;亦可遠(yuǎn)眺兩江勝景.登臨此塔,讓你有飄然若仙的聯(lián)想又有登高遠(yuǎn)眺,“一覽眾山小”的震撼,我校某數(shù)學(xué)興趣小組的同學(xué)準(zhǔn)備利用所學(xué)的三角函數(shù)知識(shí)估測該塔的高度,已知攬星塔AB位于坡度l=:1的斜坡BC上,測量員從斜坡底端C處往前沿水平方向走了120m達(dá)到地面D處,此時(shí)測得攬星塔AB頂端A的仰角為37°,攬星塔底端B的仰角為30°,已知A、B、C、D在同一平面內(nèi),則該塔AB的高度為( 。m,(結(jié)果保留整數(shù),參考數(shù)據(jù);sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.73)
A.31B.40C.60D.136
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】著名數(shù)學(xué)教育家波利亞曾說:“對(duì)一個(gè)數(shù)學(xué)問題,改變它的形式,變換它的結(jié)構(gòu),直到發(fā)現(xiàn)有價(jià)值的東西,這是數(shù)學(xué)解題的一個(gè)重要原則.”
閱讀下列兩則材料,回答問題
材料一:平方運(yùn)算和開方運(yùn)算是互逆運(yùn)算,如:a2±2ab+b2=(a±b)2,那么=|a±b|,那么如何將雙重二次根式(a>0,b>0,a±2>0)化簡呢?如能找到兩個(gè)數(shù)m,n(m>0,n>0),使得(2+()2=a即m+n=a,且使即mn=b,那么a±2=()2+()2±2=(2
∴==|,雙重二次根式得以化簡.
例如化簡:.∵3=1+2且2=1×2,∴3+2=()2+()2+2,
∴==1+.
材料二:在直角坐標(biāo)系xoy中,對(duì)于點(diǎn)P(x,y)和Q(x,y′)出如下定義:若y′=,則稱點(diǎn)Q為點(diǎn)P的“橫負(fù)縱變點(diǎn)”例如,點(diǎn)(3,2)的“橫負(fù)縱變點(diǎn)”為(3,2),點(diǎn)(﹣2,5)的“橫負(fù)縱變點(diǎn)”為(﹣2,﹣5)
問題:
(1)請(qǐng)直接寫出點(diǎn)(﹣3,﹣2)的“橫負(fù)縱變點(diǎn)”為 ;化簡= ;
(2)點(diǎn)M為一次函數(shù)y=﹣x+1圖象上的點(diǎn),M′為點(diǎn)M的橫負(fù)縱變點(diǎn),已知N(1,1),若M′N=,求點(diǎn)M的坐標(biāo);
(3)已知b為常數(shù)且1≤b≤2,點(diǎn)P在函數(shù)y=﹣x2+16(+)(﹣7≤x≤a)的圖象上,其“橫負(fù)縱變點(diǎn)”的縱坐標(biāo)y′的取值范圍是﹣32<y′≤32,若a為偶數(shù),求a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,四邊形是矩形,,點(diǎn)是線段上一動(dòng)點(diǎn) (不與重合),點(diǎn)是線段延長線上一動(dòng)點(diǎn),連接交于點(diǎn).設(shè),已知與之間的函數(shù)關(guān)系如圖②所示.
(1)求圖②中與的函數(shù)表達(dá)式;
(2)求證:;
(3)是否存在的值,使得是等腰三角形?如果存在,求出的值;如果不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】不覽夜景,未到重慶山城夜景,早在清乾隆時(shí)期就已有名氣,被時(shí)任巴縣知縣王爾鑒,列為巴渝十二景之一在朝天門碼頭坐船游兩江(即長江、嘉陵江),是游重慶賞夜景的一個(gè)經(jīng)典項(xiàng)目.一艘輪船從朝天門碼頭出發(fā)勻速行駛,小時(shí)后一快艇也從朝天門碼頭出發(fā)沿同一線路勻速行駛,當(dāng)快艇先到達(dá)目的地后立刻按原速返回并在途中與輪船第二次相遇.設(shè)輪船行駛的時(shí)間為,快艇和輪船之間的距離為,與的函數(shù)關(guān)系式如圖所示,則快艇與輪船第二次相遇時(shí)到朝天門碼頭的距離為_____千米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下表是二次函數(shù)的的部分對(duì)應(yīng)值:
··· | ··· | ||||||||
··· | ··· |
則對(duì)于該函數(shù)的性質(zhì)的判斷:
①該二次函數(shù)有最小值;
②不等式的解集是或
③方程的實(shí)數(shù)根分別位于和之間;
④當(dāng)時(shí),函數(shù)值隨的增大而增大;
其中正確的是:
A.①②③B.②③C.①②D.①③④
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com