【題目】定義:對于任何數(shù)a,符號[a]表示不大于a的最大整數(shù).

例如:[5.7]=5,[5]=5,[﹣1.5]=﹣2.

(1)[﹣]=   ;

(2)如果[a]=3,那么a的取值范圍是   ;

(3)如果[]=﹣3,求滿足條件的所有整數(shù)x.

【答案】(1)-4;(2) 3≤x<4;(3) 滿足條件的所有整數(shù)x的值為﹣3、﹣2

【解析】

(1)根據(jù)新定義即可得;

(2)根據(jù)新定義即可得;

(3)由新定義得出-3≤<-2,解之可得x的范圍,從而得出答案.

解:(1)[-]=-4,

故答案為:-4;

(2)如果[a]=3,那么a的取值范圍是3≤x<4,

故答案為:3≤x<4;

(3)由題意得-3≤<-2,

解得:-3≤x<-,

∴滿足條件的所有整數(shù)x的值為-3、-2.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小強(qiáng)為了測量一幢高樓高AB,在旗桿CD與樓之間選定一點(diǎn)P.測得旗桿頂C視線PC與地面夾角∠DPC=36°,測樓頂A視線PA與地面夾角∠APB=54°,量得P到樓底距離PB與旗桿高度相等,等于10米,量得旗桿與樓之間距離為DB=36米,小強(qiáng)計(jì)算出了樓高,樓高AB是多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知圓錐的母線長為6cm,底面圓的半徑為3cm,則此圓錐側(cè)面展開圖的圓心角的度數(shù)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是甲、乙兩車在某時段速度隨時間變化的圖象,下列結(jié)論錯誤的是( )

A. 乙前4秒行駛的路程為48米 B. 兩車到第3秒時行駛的路程相等

C. 在0到8秒內(nèi)甲的速度每秒增加4米/秒 D. 在4至8秒內(nèi)甲的速度都大于乙的速度

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=﹣x2+3x+4與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,點(diǎn)D在拋物線上且橫坐標(biāo)為3.

(1)求A、B、C、D的坐標(biāo);
(2)求∠BCD的度數(shù);
(3)求tan∠DBC的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,BD,CD分別是過⊙O上點(diǎn)B,C的切線,且∠BDC=110°.連接AC,求∠A的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB是⊙O的直徑,點(diǎn)C、D在⊙O上,點(diǎn)E在⊙O外,∠EAC=∠D=60°.

(1)求證:AE是⊙O的切線;
(2)當(dāng)BC=4時求劣弧AC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】西安市在創(chuàng)建文明城區(qū)的活動中,有兩個長度相等的彩色磚道鋪設(shè)任務(wù),分別交給甲、乙兩個施工隊(duì)同時進(jìn)行施工,如圖是反映所鋪設(shè)的彩色磚道的長度y(米)與施工時間x(小時)之間關(guān)系的部分圖象,請解答下列問題:

(1)求乙隊(duì)在0x6的時段內(nèi)yx的函數(shù)關(guān)系式.

(2)如果甲隊(duì)施工速度不變,乙隊(duì)在施工6小時后,施工速度增加到12/小時,結(jié)果兩隊(duì)同時完成了任務(wù),求甲隊(duì)從開始施工到完成所鋪設(shè)的彩色磚道的長度為多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩地相距300km,一輛貨車和一輛轎車先后從甲地出發(fā)駛向乙地。如圖,線段OA表示貨車離甲地的距離km)與時間h)之間的函數(shù)關(guān)系,折線BCDE變式轎車離甲地的距離km)與時間h)之間的函數(shù)關(guān)系。根據(jù)圖像,解答下列問題:

1)線段CD表示轎車在途中停留了 h.

2)求線段DE對應(yīng)的函數(shù)關(guān)系式(2.5≤x≤4.5.

3)求轎車從甲地出發(fā)后經(jīng)過多長時間追上貨車.

查看答案和解析>>

同步練習(xí)冊答案