如果(2x)2-64=0,那么x等于


  1. A.
    ±4
  2. B.
    4
  3. C.
    8
  4. D.
    -8
A
分析:這個(gè)式子先移項(xiàng),變成(2x)2=64,從而把問題轉(zhuǎn)化為求9的平方根.
解答:(2x)2-64=0,
移項(xiàng)得(2x)2=64,
∴2x=±8,
∴x=±4,
故選A.
點(diǎn)評(píng):此題主要考查了直接開平方法解一元二次方程,解這類問題要移項(xiàng),把所含未知數(shù)的項(xiàng)移到等號(hào)的左邊,把常數(shù)項(xiàng)移項(xiàng)等號(hào)的右邊,化成x2=a(a≥0)的形式,利用數(shù)的開方直接求解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

對(duì)非負(fù)實(shí)數(shù)x“四舍五入”到個(gè)位的值記為<x>,
即:當(dāng)n為非負(fù)整數(shù)時(shí),如果n-
1
2
≤x<n+
1
2
則<x>=n.
如:<0>=<0.48>=0,<0.64>=<1.493>=1,<2>=2,<3.5>=<4.12>=4,…
試解決下列問題:
(1)填空:①<π>=
 
(π為圓周率);
②如果<2x-1>=3,則實(shí)數(shù)x的取值范圍為
 

(2)①當(dāng)x≥0,m為非負(fù)整數(shù)時(shí),求證:<x+m>=m+<x>;
②舉例說明<x+y>=<x>+<y>不恒成立;
(3)求滿足<x>=
4
3
x
的所有非負(fù)實(shí)數(shù)x的值;
(4)設(shè)n為常數(shù),且為正整數(shù),函數(shù)y=x2-x+
1
4
的自變量x在n≤x<n+1范圍內(nèi)取值時(shí),函數(shù)值y為整數(shù)的個(gè)數(shù)記為a,滿足<
k
>=n的所有整數(shù)k的個(gè)數(shù)記為b.求證:a=b=2n.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

深化理解:
對(duì)非負(fù)實(shí)數(shù)x“四舍五入”到個(gè)位的值記為<x>,
即:當(dāng)n為非負(fù)整數(shù)時(shí),如果n-
1
2
≤x<n+
1
2
,則<x>=n

如:<0>=<0.48>=0,<0.64>=<1.493>=1,<2>=2,<3.5>=<4.12>=4,…
試解決下列問題:
(1)填空:<π>=
 
(π為圓周率);
(2)如果<2x-1>=3,求實(shí)數(shù)x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如果(2x)2-64=0,那么x等于(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【深化理解】
對(duì)非負(fù)實(shí)數(shù)x“四舍五入”到個(gè)位的值記為<x>,
即:當(dāng)n為非負(fù)整數(shù)時(shí),如果n-
1
2
≤x<n+
1
2
,則<x>=n

如:<0>=<0.48>=0,<0.64>=<1.493>=1,<2>=2,<3.5>=<4.12>=4,…
又如:如果<x+1>=5,則5-
1
2
≤x+1<5+
1
2
,所以實(shí)數(shù)x的取值范圍為
7
2
≤x<
9
2

試解決下列問題:
(1)填空:①<π>=
3
3
(π為圓周率);<6.93>=
7
7

②如果<2x-1>=3,則實(shí)數(shù)x的取值范圍為
7
4
≤x<
9
4
7
4
≤x<
9
4
;
(2)舉例說明<x+y>=<x>+<y>不恒成立.

查看答案和解析>>

同步練習(xí)冊(cè)答案