一個等腰梯形的兩底之差為12,高為6,則等腰梯形的銳角為(   )
A.30°B.45°C.60°D.75°
B.

試題分析:如圖,作AE⊥BC、DF⊥BC,四邊形ABCD為等腰梯形,AD∥BC,BC-AD=12,AE=6,
∵四邊形ABCD為等腰梯形,∴AB=DC,∠B=∠C.
∵AD∥BC,AE⊥BC,DF⊥BC,∴AEFD為矩形. ∴AE=DF,AD="EF." ∴△ABE≌△DCF. ∴BE=FC.
∴BC-AD=BC-EF=2BE=12.∴BE=6.
∵AE=6,∴△ABE為等腰直角三角形. ∴∠B=∠C=45°.
故選B.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

已知四邊形ABCD為平行四邊形,點E、F分別在邊AB、CD上,且AE=CF。

(1)求證:△ADE≌△CBF;
(2)若DF=BF,求證:四邊形DEBF為菱形.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

已知□ABCD,對角線AC、BD相交于點O.
⑴若AB=BC,則□ABCD是         ;⑵若AC=BD,則□ABCD是         ;
⑶若∠BCD=90°,則□ABCD是      ;⑷若OA=OB,且OA⊥OB,則□ABCD是         ;
⑸若AB=BC,且AC=BD,則□ABCD是         .

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,在菱形ABCD中,∠B=60°,點E,F(xiàn)分別從點B,D同時以同樣的速度沿邊BC,DC向點C運動.給出以下四個結論:

;
②∠;
③ 當點E,F(xiàn)分別為BC,DC的中點時,△AEF是等邊三角形;
④ 當點E,F(xiàn)分別為邊BC,DC的中點時,△AEF的面積最大.
上述結論正確的序號有            .

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

等腰梯形ABCD中,E、F、G、H分別是各邊的中點,則四邊形EFGH的形狀是
A.平行四邊形B.矩形C.菱形D.正方形

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,矩形ABCD中,點E,F,G,H分別在邊AB,BC,CD,DA上,點P在矩形ABCD內(nèi).若AB=4cm,BC=6cm,AE=CG=3cm,BF=DH=4cm,四邊形AEPH的面積為8cm2,則四邊形PFCG的面積為________cm2.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖:在等腰梯形ABCD中,AD∥BC,過D作DF⊥BC于F,若AD=2,BC=4,DF=2,則DC的長為(    )
A.1B.C.2D.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,四邊形ABCD是對角線互相垂直的四邊形,且OB=OD,請你添加一個適當?shù)臈l件        ,使四邊形ABCD成為菱形(只需添加一個即可)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,在矩形紙片ABCD中,AB=12,BC=5,點E在AB上,將△DAE沿DE折疊,使點A落在對角線BD上的點A′處,則AE的長為_________

查看答案和解析>>

同步練習冊答案