【題目】如圖,在平面直角坐標系中,二次函數(shù)的圖像與坐標軸交于A、B、C三點,其中點A的坐標為(0,8),點B的坐標為(-4,0.

1)求該二次函數(shù)的表達式及點C的坐標;

2)點D的坐標為(0,4),點F為該二次函數(shù)在第一象限內(nèi)圖像上的動點,連接CD、CF,以CD、CF為鄰邊作平行四邊形CDEF,設平行四邊形CDEF的面積為S.

①求S的最大值;

②在點F的運動過程中,當點E落在該二次函數(shù)圖像上時,請直接寫出此時S的值.

【答案】1,;(2)①50

【解析】

1)把A點和B點坐標代入得到關(guān)于bc的方程組,然后解方程組求出b、c即可得到拋物線的解析式;然后計算函數(shù)值為0時對應的自變量的值即可得到C點坐標

2)①連結(jié)DFOF,如圖,設,利用S四邊形OCFD,利用三角形面積公式得到SCDF=,再利用二次函數(shù)的性質(zhì)得到△CDF的面積有最大值,然后根據(jù)平行四邊形的性質(zhì)可得S的最大值;

②由于四邊形CDEF為平行四邊形,則CDEF,CD=EF,利用C點和D的坐標特征可判斷點C向左平移8個單位,再向上平移4個單位得到點D,則點F向左平移8個單位,再向上平移4個單位得到點E,即,然后把代入拋物線解析式得到關(guān)于t的方程,再解方程求出t后計算△CDF的面積,從而得到S的值.

解:(1)把,代入得:

解得

所以拋物線的解析式為

時,,解得,

所以點坐標為

2)①連接,如圖,設

時,的面積有最大值,最大值為25

∵四邊形為平行四邊形

的最大值為50

②∵四邊形為平行四邊形

,

∵點向左平移8個單位,再向上平移4個單位得到點

∴點向左平移8個單位,再向上平移4個單位得到點,即

在拋物線上

,解得

時,

∴此時

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,△ABC和△DEC均為等腰三角形,且∠ACB=DCE=90°,連接BE,AD,兩條線段所在的直線交于點P.

1)線段BEAD有何數(shù)量關(guān)系和位置關(guān)系,請說明理由.

2)若已知BC=12DC=5,△DEC繞點C順時針旋轉(zhuǎn),

①如圖2,當點D恰好落在BC的延長線上時,求AP的長;

②在旋轉(zhuǎn)一周的過程中,設△PAB的面積為S,求S的最值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,中,,將繞點按逆時針方向旋轉(zhuǎn).得到,連接,交于點

1)求證:;

2)用表示的度數(shù);

3)若使四邊形是菱形,求的度數(shù),

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,二次函數(shù)的圖象與軸交于,,與軸交于點.若點,同時從點出發(fā),都以每秒個單位長度的速度分別沿,邊運動,其中一點到達端點時,另一點也隨之停止運動.

1)直接寫出二次函數(shù)的解析式;

2)當,運動到秒時,將△APQ沿翻折,若點恰好落在拋物線上點處,求出點坐標;

3)當點運動到點時,點停止運動,這時,在軸上是否存在點,使得以,為頂點的三角形為等腰三角形?若存在,請直接寫出 點坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】暴雨過后,某地遭遇山體滑坡,武警總隊派出一隊武警戰(zhàn)士前往搶險. 半小時后,第二隊前去支援,平均速度是第一隊的1.5倍,結(jié)果兩隊同時到達.已知搶險隊的出發(fā)地與災區(qū)的距離為90千米,兩隊所行路線相同,問兩隊的平均速度分別是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,四邊形ABCD中,ACBD于點O,AO=CO=4BO=DO=3,點P為線段AC上的一個動點.過點P分別作PMAD于點M,作PNDC于點N. 連接PB,在點P運動過程中,PM+PN+PB的最小值等于_________ .

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖示二次函數(shù)y=ax2+bx+c的對稱軸在y軸的右側(cè),其圖象與x軸交于點A(﹣1,0)與點C(x2,0),且與y軸交于點B(0,﹣2),小強得到以下結(jié)論:0a2;﹣1b0;c=﹣1;|a|=|b|時x2﹣1;以上結(jié)論中正確結(jié)論的序號為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某公司對辦公大樓一塊墻面進行如圖所示的圖案設計.這個圖案由四個全等的直角三角形和一個小正方形拼接而成的大正方形,設小正方形的邊長m,直角三角形較短邊長n,且n2m4,大正方形的面積為S

1)求S關(guān)于m的函數(shù)關(guān)系式.

2)若小正方形邊長不大于3,當大正方形面積最大時,求m的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在邊長為1的小正方形組成的網(wǎng)格中,給出了格點△ABC(頂點為網(wǎng)格線的交點)

(1)將△ABC先向下平移3個單位長度,再向右平移4個單位長度后得到△A1B1C1.畫出平移后的圖形;

(2)將△ABC繞點A1順時針旋轉(zhuǎn)90°后得到△A2B2C2.畫出旋轉(zhuǎn)后的圖形;

(3)借助網(wǎng)格,利用無刻度直尺畫出△A1B1C1的中線A1D1(畫圖中要體現(xiàn)找關(guān)鍵點的方法)

查看答案和解析>>

同步練習冊答案