【題目】在半徑為17dm的圓柱形油罐內裝進一些油后,橫截面如圖.

1)若油面寬AB=16dm,求油的最大深度.

2)在(1)的條件下,若油面寬變?yōu)?/span>CD=30dm,求油的最大深度上升了多少dm?

【答案】1GF= 2dm;(2)油的最大深度上升了7dm

【解析】

(1)OFABABF,交圓于G,連接OA,根據(jù)垂徑定理求出AF的長,根據(jù)勾股定理求出OF,計算即可;

(2)連接OC,根據(jù)垂徑定理求出CE的長,根據(jù)勾股定理求出答案.

1)作OFABABF,交圓于G,連接OA,

AF=AB=8,

由勾股定理得,OF==15,

GF=OG-OF=2dm;

2)連接OC

OECD,

CE=EF=15,

OE==8

EF=OG-OE-FG=7dm,

答:油的最大深度上升了7dm

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知菱形A1B1C1D1的邊長為2,∠A1B1C1=60°,對角線A1C1,B1D1相交于點O.以點O為坐標原點,分別以OA1,OB1所在直線為x軸、y軸,建立如圖所示的直角坐標系.以B1D1為對角線作菱形B1C2D1A2∽菱形A1B1C1D1,再以A2C2為對角線作菱形A2B2C2D2∽菱形B1C2D1A2,再以B2D2為對角線作菱形B2C3D2A3∽菱形A2B2C2D2,…,按此規(guī)律繼續(xù)作下去,在x軸的正半軸上得到點A1,A2,A3,…,An,則點An的坐標為____________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知四邊形ABCD是平行四邊形,下列結論中不正確的是(  )

A. ABBC時,它是菱形 B. ACBD時,它是菱形

C. 當∠ABC90°時,它是矩形 D. ACBD時,它是正方形

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小張承包了一片荒山,他想把這片荒山改造成一個蘋果園,現(xiàn)在有一種蘋果樹苗,它的成活率如下表所示:

移植棵數(shù)

成活數(shù)

成活率

移植棵數(shù)

成活數(shù)

成活率

50

47

1500

1335

270

235

3500

3203

400

369

7000

6335

750

662

14000

12628

下面有四個推斷:

①當移植的樹數(shù)是1500時,表格記錄成活數(shù)是1335,所以這種樹苗成活的概率是

②隨著移植棵數(shù)的增加,樹苗成活的頻率總在附近擺動,顯示出一定的穩(wěn)定性,可以估計樹苗成活的概率是;

③若小張移植10000棵這種樹苗,則可能成活9000棵;

④若小張移植20000棵這種樹苗,則一定成活18000棵.

其中合理的是  

A. ①③B. ①④C. ②③D. ②④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖:ABC的內切圓O與邊BC切于點D,若∠BOC=135°BD=3,CD=2,則ABC的面積為=______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將ABCDAD邊延長至點E,使DEAD,連接CEFBC邊的中點,連接FD

(1)求證:四邊形CEDF是平行四邊形;

(2)AB3,AD4,∠A60°,求CE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】定義:在平面直角坐標系中,一個圖形先向右平移a個單位,再繞原點按順時針方向旋轉θ角度,這樣的圖形運動叫作圖形的γ(a,θ)變換.

如圖,等邊ABC的邊長為1,點A在第一象限,點B與原點O重合,點Cx軸的正半軸上.A1B1C1就是ABC經(jīng)γ(1,180°)變換后所得的圖形.

ABC經(jīng)γ(1,180°)變換后得A1B1C1A1B1C1經(jīng)γ(2,180°)變換后得A2B2C2,A2B2C2經(jīng)γ(3,180°)變換后得A3B3C3,依此類推……

An1Bn1Cn1經(jīng)γ(n,180°)變換后得AnBnCn,則點A1的坐標是__,點A2018的坐標是 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABO的直徑,弦CDAB,∠CDB30°,CD6,陰影部分圖形的面積為( )

A. 4πB. 3πC. 2πD. π

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知邊長為5的菱形ABCD中,對角線AC長為6,點E在對角線BD上且tanEAC=,則BE的長為_____

查看答案和解析>>

同步練習冊答案