如圖,以A為頂點的拋物線與y軸交于點B、已知A、B兩點的坐標(biāo)分別為(3,0)、(0,4).
(1)求拋物線的解析式;
(2)設(shè)M(m,n)是拋物線上的一點(m、n為正整數(shù)),且它位于對稱軸的右側(cè).若以M、B、O、A為頂點的四邊形四條邊的長度是四個連續(xù)的正整數(shù),求點M的坐標(biāo);
(3)在(2)的條件下,試問:對于拋物線對稱軸上的任意一點P,PA2+PB2+PM2>28是否總成立?請說明理由.
(1)設(shè)y=a(x-3)2,
把B(0,4)代入,
得a=
4
9
,
∴y=
4
9
(x-3)2;

(2)解法一:
∵四邊形OAMB的四邊長是四個連續(xù)的正整數(shù),其中有3、4,
∴可能的情況有三種:1、2、3、4;2、3、4、5;3、4、5、6,
∵M(jìn)點位于對稱軸右側(cè),且m,n為正整數(shù),
∴m是大于或等于4的正整數(shù),
∴MB≥4,
∵AO=3,OB=4,
∴MB只有兩種可能,∴MB=5或MB=6,
當(dāng)m=4時,n=
4
9
(4-3)2=
4
9
(不是整數(shù),舍去);
當(dāng)m=5時,n=
16
9
(不是整數(shù),舍去);
當(dāng)m=6時,n=4,MB=6;
當(dāng)m≥7時,MB>6;
因此,只有一種可能,即當(dāng)點M的坐標(biāo)為(6,4)時,MB=6,MA=5,
四邊形OAMB的四條邊長分別為3、4、5、6.
解法二:
∵m,n為正整數(shù),n=
4
9
(m-3)2,
∴(m-3)2應(yīng)該是9的倍數(shù),
∴m是3的倍數(shù),
又∵m>3,
∴m=6,9,12,
當(dāng)m=6時,n=4,
此時,MA=5,MB=6,
∴當(dāng)m≥9時,MB>6,
∴四邊形OAMB的四邊長不能是四個連續(xù)的正整數(shù),
∴點M的坐標(biāo)只有一種可能(6,4).

(3)設(shè)P(3,t),MB與對稱軸交點為D,
則PA=|t|,PD=|4-t|,PM2=PB2=(4-t)2+9,
∴PA2+PB2+PM2=t2+2[(4-t)2+9]
=3t2-16t+50
=3(t-
8
3
2+
86
3

∴當(dāng)t=
8
3
時,PA2+PB2+PM2有最小值
86
3

∴PA2+PB2+PM2>28總是成立.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線m:y=ax2+bx+c(a≠0)與x軸交于A、B兩點(點A在左),與y軸交于點C,頂點為M,拋物線上部分點的橫坐標(biāo)與對應(yīng)的縱坐標(biāo)如下表:
x-2023
y5-3-30
(1)根據(jù)表中的各對對應(yīng)值,請寫出三條與上述拋物線m有關(guān)(不能直接出現(xiàn)表中各對對應(yīng)值)的不同類型的正確結(jié)論;
(2)若將拋物線m,繞原點O順時針旋轉(zhuǎn)180°,試寫出旋轉(zhuǎn)后拋物線n的解析式,并在坐標(biāo)系中畫出拋物線m、n的草圖;
(3)若拋物線n的頂點為N,與x軸的交點為E、F(點E、F分別與點A、B對應(yīng)),試問四邊形NFMB是何種特殊四邊形?并說明其理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知兩直線l1,l2分別經(jīng)過點A(3,0),點B(-1,0),并且當(dāng)兩直線同時相交于y負(fù)半軸的點C時,恰好有l(wèi)1⊥l2,經(jīng)過點A、B、C的拋物線的對稱軸與直線l2交于點D,如圖所示.
(1)求證:△AOC△COB;
(2)求出拋物線的函數(shù)解析式;
(3)當(dāng)直線l1繞點C順時針旋轉(zhuǎn)α(0°<α<90°)時,它與拋物線的另一個交點為P(x,y),求四邊形APCB面積S關(guān)于x的函數(shù)解析式,并求S的最大值;
(4)當(dāng)直線l1繞點C旋轉(zhuǎn)時,它與拋物線的另一個交點為E,請找出使△ECD為等腰三角形的點E,并求出點E的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,四邊形ABCD是正方形,已知A(5,4),B(10,4):
(1)求點C、D的坐標(biāo);
(2)若一次函數(shù)y=kx+3(k≠0)的圖象過C點,求k的值;
(3)在(2)的條件下,①若將直線l:y=kx+3向下平移a個單位,將正方形分為上下兩部分的面積比為7:3,試求出a的值;②若將直線l:y=kx+3平移后與以A為圓心,AC為半徑的圓相切,直接寫出平移后的直線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知二次函數(shù)y=x2+bx+c與x軸交于A(-1,0)、B(1,0)兩點.
(1)求這個二次函數(shù)的關(guān)系式;
(2)若有一半徑為r的⊙P,且圓心P在拋物線上運動,當(dāng)⊙P與兩坐標(biāo)軸都相切時,求半徑r的值.
(3)半徑為1的⊙P在拋物線上,當(dāng)點P的縱坐標(biāo)在什么范圍內(nèi)取值時,⊙P與y軸相離、相交?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

數(shù)學(xué)家們通過長期的研究,得到了關(guān)于“等周問題”的重要結(jié)論:在周長相同的所有封閉平面曲線中,以圓所圍成的面積最大.
“等周問題”雖然較為繁雜,但其根本思想基于下面2個事實:
事實1:等周長n邊形的面積,當(dāng)圖形為正n邊形時,其面積最大;
事實2:等周長n邊形的面積,當(dāng)邊數(shù)n越大時,其面積也越大.
為了理解這些事實的合理性,曙光數(shù)學(xué)小組走出校門展開了下列課題研究.請你幫助他們解決其中的一些問題.
現(xiàn)有長度為100m的籬笆(可彎曲圍成一個區(qū)域).
(1)如果用籬笆圍成一個長方形雞場,怎樣圍才能使雞場的面積最大?為什么?
(2)如果用籬笆圍成一個正五邊形雞場,那么與(1)中的正方形雞場比較,哪個面積更大?請在事實1的基礎(chǔ)上證明事實2:“等周長n邊形的面積,當(dāng)邊數(shù)n越大時,其面積也越大.”
(3)利用事實1和事實2,請對“等周問題”的重要結(jié)論作出較為合理的解釋.
(4)愛動腦筋的小明提出一個問題:如果借用一條充分長的直墻,將籬笆圍成一個四邊形雞場,為了使雞場的面積盡量大,所圍成的長方形雞場的長是寬的2倍(如圖).你覺得他講的是否有道理?你有沒有更好的方法,使圍成的四邊形雞場的面積更大?如果有,請說明你的方法.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

一玩具廠去年生產(chǎn)某種玩具,成本為10元/件,出廠價為12元/件,年銷售量為2萬件.今年計劃通過適當(dāng)增加成本來提高產(chǎn)品檔次,以拓展市場.若今年這種玩具每件的成本比去年成本增加0.7x倍,今年這種玩具每件的出廠價比去年出廠價相應(yīng)提高0.5x倍,則預(yù)計今年年銷售量將比去年年銷售量增加x倍(本題中0<x≤11).
(1)用含x的代數(shù)式表示,今年生產(chǎn)的這種玩具每件的成本為______元,今年生產(chǎn)的這種玩具每件的出廠價為______元.
(2)求今年這種玩具的每件利潤y元與x之間的函數(shù)關(guān)系式.
(3)設(shè)今年這種玩具的年銷售利潤為w萬元,求當(dāng)x為何值時,今年的年銷售利潤最大?最大年銷售利潤是多少萬元?
注:年銷售利潤=(每件玩具的出廠價-每件玩具的成本)×年銷售量.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,一位籃球運動員跳起投籃,球沿拋物線y=-
1
5
x2+3.5運行,然后準(zhǔn)確落入籃框內(nèi).已知籃框的中心離地面的距離為3.05米.
(1)球在空中運行的最大高度為多少米?
(2)如果該運動員跳投時,球出手離地面的高度為2.25米,請問他距離籃框中心的水平距離是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,要設(shè)計一個等腰梯形的花壇,花壇上底120米,下底180米,上下底相距80米,在兩腰中點連線(虛線)處有一條橫向甬道,上下底之間有兩條縱向甬道,各甬道的寬度相等.設(shè)甬道的寬為x米.
(1)用含x的式子表示橫向甬道的面積;
(2)當(dāng)三條甬道的面積是梯形面積的八分之一時,求甬道的寬;
(3)根據(jù)設(shè)計的要求,甬道的寬不能超過6米.如果修建甬道的總費用(萬元)與甬道的寬度成正比例關(guān)系,比例系數(shù)是5.7,花壇其余部分的綠化費用為每平方米0.02萬元,那么當(dāng)甬道的寬度為多少米時,所建花壇的總費用最少?最少費用是多少萬元?

查看答案和解析>>

同步練習(xí)冊答案